Please wait a minute...
New Technology of Library and Information Service  2004, Vol. 20 Issue (12): 55-57    DOI: 10.11925/infotech.1003-3513.2004.12.13
Current Issue | Archive | Adv Search |
Research on Data Preprocessing Method in Web Log Mining
Liu Shengguo
(Library of Baoji University of Arts and Sciences, Shanxi  721000,China)
Download: PDF (0 KB)  
Export: BibTeX | EndNote (RIS)      

Web log mining is the most important application in Web data mining. We can improve the organization structure of Web site and its function ,increase personalized service and discover the potential reader group on the basis of the analysis and research of  Web log mining documents. Data preprocessing decides the quality of Web log mining. It includes data clearing, user identifying, user session identifying, format, etc. and its aim is to separate Web server log into multi-user reference strings and also give the reference type realization.

Key wordsWeb log mining      Data mining      Data preprocessing      Research method     
Received: 27 July 2004      Published: 25 December 2004


Corresponding Authors: Liu Shengguo     E-mail:
About author:: Liu Shengguo

Cite this article:

Liu Shengguo. Research on Data Preprocessing Method in Web Log Mining. New Technology of Library and Information Service, 2004, 20(12): 55-57.

URL:     OR

1  [加]Han J,Kamber M.数据挖掘概念与技术.北京:机械工业出版社,2001:123-124
2  赵伟,何丕廉,陈霞,谢振亮. Web日志挖掘中的数据预处理技术研究. 计算机应用,2003 (5):62-67
3  童恒庆,梅清.  Web的日志挖掘数据预处理研究.现代计算机,2004(3):5-9
4  张健沛,刘建东,杨静. 基于Web的日志挖掘数据预处理方法的研究. 计算机工程与应用,2003(10):191-193

[1] Yong Zhang,Shuqing Li,Yongshang Cheng. Mining Algorithm for Weighted Association Rules Based on Frequency Effective Length[J]. 数据分析与知识发现, 2019, 3(7): 85-93.
[2] Quan Lu,Anqi Zhu,Jiyue Zhang,Jing Chen. Research on User Information Requirement in Chinese Network Health Community: Taking Tumor-forum Data of Qiuyi as an Example[J]. 数据分析与知识发现, 2019, 3(4): 22-32.
[3] Dongmei Mu,Hui Fa,Ping Wang,Jing Sun. Research on Disease Risk Factors on Structural Equation Model[J]. 数据分析与知识发现, 2019, 3(4): 80-89.
[4] Li Yongnan. Using Bayes Theory to Classify Counter Terrorism Intelligence[J]. 数据分析与知识发现, 2018, 2(10): 9-14.
[5] Mu Dongmei,Wang Ping,Zhao Danning. Reducing Data Dimension of Electronic Medical Records: An Empirical Study[J]. 数据分析与知识发现, 2018, 2(1): 88-98.
[6] Hu Zhongyi,Wang Chaoqun,Wu Jiang. Identifying Phishing Websites with Multiple Online Data Sources[J]. 数据分析与知识发现, 2017, 1(6): 47-55.
[7] Jiang Siwei,Xie Zhenping,Chen Meijie,Cai Ming. Self-Explainable Reduction Method for Mixed Feature Data Modeling[J]. 数据分析与知识发现, 2017, 1(12): 92-100.
[8] Mu Dongmei,Ren Ke. Discovering Knowledge from Electronic Medical Records with Three Data Mining Algorithms[J]. 现代图书情报技术, 2016, 32(6): 102-109.
[9] Li Feng,Li Shu’ning,Yu Jing. A Department Oriented Library Usage Data System for Graduates[J]. 现代图书情报技术, 2016, 32(5): 99-103.
[10] Zhao Jingxian. Detect of Internet Fake Public Opinion Based on Decision Tree[J]. 现代图书情报技术, 2015, 31(6): 78-84.
[11] Liu Huoyu, Wang Dongbo. Research and Implementation of Data Preprocessing Oriented to Paper Similarity Detection[J]. 现代图书情报技术, 2015, 31(5): 50-56.
[12] He Jianmin, Wang Zhe. The Pedigree Method to Mine Influential Clusters of Topic Information in Social Network[J]. 现代图书情报技术, 2015, 31(5): 65-72.
[13] Huang Wenbin, Xu Shanchuan, Ma Long, Wang Jun. Analysis of Mobile User Behaviors with Telecommunication Data[J]. 现代图书情报技术, 2015, 31(5): 80-87.
[14] Qiang Shaohua, Wu Peng. The Research of Spatial Measure of Users' Mental Model of Website Category from the View of Regional Differences[J]. 现代图书情报技术, 2015, 31(11): 68-74.
[15] Hao Mei, Wang Daoping. Mining Customer Focus Features from Product Reviews Oriented Supply Chain[J]. 现代图书情报技术, 2014, 30(4): 65-70.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938