Please wait a minute...
New Technology of Library and Information Service  2005, Vol. 21 Issue (3): 23-28    DOI: 10.11925/infotech.1003-3513.2005.03.06
Current Issue | Archive | Adv Search |
Research on Relativity between Subjects Based  on Association Rule Mining
Wang Hao
(Information Management Department of Nanjing University,Nanjing 210093,China)
Download: PDF(0 KB)   HTML  
Export: BibTeX | EndNote (RIS)      

This article discusses relativity between subjects of social science based on association rule mining data from information of paper citing in CSSCI. The article introduces basic concepts about association rule at first; then disposals data, calculates supports and confidences of frequent items and infers association rules tables from three points of view; in the end analyses inferred association rules and draws conclusions.

Key wordsData mining      Association rule      CSSCI      Relativity between subjects      Frequent item set     
Received: 14 September 2004      Published: 25 March 2005


Corresponding Authors: Wang Hao     E-mail:
About author:: Wang Hao

Cite this article:

Wang Hao. Research on Relativity between Subjects Based  on Association Rule Mining. New Technology of Library and Information Service, 2005, 21(3): 23-28.

URL:     OR

1邓更,唐恒永. 高校科研决策支持系统中关联规则挖掘的应用. 沈阳师范大学学报(自然科学版),2004(1):7--11
2刘君强,孙晓莹,潘云鹤. 关联规则挖掘技术研究的新进展. 计算机科学,2004(1):110-113
3王猛,王景光,李延霞. 相关性分析在关联规则挖掘中的应用. 统计与信息论坛,2004(1):38-39
4王小玉,王亚东,冯丽. 关联规则的挖掘. 信息技术,2003(1):55-57
5陈霄凯,黄志强. 关联规则挖掘算法的分析与研究. 微机发展,2003(4):73-75
6袁军鹏,朱东华. 基于Apriori算法的多循环关联规则挖掘综述. 计算机科学,2004(1):114-117
7张新霞,王耀青. 基于统计相关性的兴趣关联规则的挖掘. 计算机工程与科学,2003(3):60-62
8Chen L, Bhowmick SS, Chia LT. Mining association rules from structural deltas of historical XML documents. LECTURE NOTES IN ARTIFICIAL INTELLIGENCE 3056: 452-457 2004
9Srikumar,Krishnamoorthy, Bhasker,Bharat. Efficiently mining Maximal Frequent Sets in dense databases for discovering association rules. Intelligent Data Analysis, 2004,8(2):171, 12
10Zhang CQ, Zhang SC. Association rule mining - Models and algorithms - Introduction. LECTURE NOTES IN ARTIFICIAL INTELLIGENCE 2307: 1+ 2002

[1] Quan Lu,Anqi Zhu,Jiyue Zhang,Jing Chen. Research on User Information Requirement in Chinese Network Health Community: Taking Tumor-forum Data of Qiuyi as an Example[J]. 数据分析与知识发现, 2019, 3(4): 22-32.
[2] Dongmei Mu,Hui Fa,Ping Wang,Jing Sun. Research on Disease Risk Factors on Structural Equation Model[J]. 数据分析与知识发现, 2019, 3(4): 80-89.
[3] Yue He,Yue Feng,Shupeng Zhao,Yufeng Ma. Recommending Contents Based on Zhihu Q&A Community: Case Study of Logistics Topics[J]. 数据分析与知识发现, 2018, 2(9): 42-49.
[4] Yongnan Li. Using Bayes Theory to Classify Counter Terrorism Intelligence[J]. 数据分析与知识发现, 2018, 2(10): 9-14.
[5] Dongmei Mu,Ping Wang,Danning Zhao. Reducing Data Dimension of Electronic Medical Records: An Empirical Study[J]. 数据分析与知识发现, 2018, 2(1): 88-98.
[6] Yue He,Aixin Wang,Yue Feng,Li Wang. Optimizing Layouts of Outpatient Pharmacy Based on Association Rules[J]. 数据分析与知识发现, 2018, 2(1): 99-108.
[7] Zhongyi Hu,Chaoqun Wang,Jiang Wu. Identifying Phishing Websites with Multiple Online Data Sources[J]. 数据分析与知识发现, 2017, 1(6): 47-55.
[8] Siwei Jiang,Zhenping Xie,Meijie Chen,Ming Cai. Self-Explainable Reduction Method for Mixed Feature Data Modeling[J]. 数据分析与知识发现, 2017, 1(12): 92-100.
[9] Xing Wei,Dehua Hu,Minhan Yi,Qizhen Zhu,Wenjie Zhu. Extracting Disease-Gene-Drug Correlations Based on Data Cube[J]. 数据分析与知识发现, 2017, 1(10): 94-104.
[10] Mingxuan Huang. Cross Language Information Retrieval Model Based on Matrix-weighted Association Patterns Mining[J]. 数据分析与知识发现, 2017, 1(1): 26-36.
[11] Mu Dongmei,Ren Ke. Discovering Knowledge from Electronic Medical Records with Three Data Mining Algorithms[J]. 现代图书情报技术, 2016, 32(6): 102-109.
[12] Li Feng,Li Shu’ning,Yu Jing. A Department Oriented Library Usage Data System for Graduates[J]. 现代图书情报技术, 2016, 32(5): 99-103.
[13] Guangce Ruan, Lei Xia. Mining Document Topics Based on Association Rules[J]. 数据分析与知识发现, 2016, 32(12): 50-56.
[14] Du Siqi, Li Honglian, Lv Xueqiang. Research of Chinese Chunk Parsing in Application of the Product Feature Extraction[J]. 现代图书情报技术, 2015, 31(9): 26-30.
[15] Zhao Jingxian. Detect of Internet Fake Public Opinion Based on Decision Tree[J]. 现代图书情报技术, 2015, 31(6): 78-84.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938