Please wait a minute...
New Technology of Library and Information Service  2005, Vol. 21 Issue (6): 30-38    DOI: 10.11925/infotech.1003-3513.2005.06.09
Current Issue | Archive | Adv Search |
Overview of Research on Foreign Information Filtering Systems
Cheng Ni   Cui Jianhai   Wang Jun(Compilers)
(Department of Information Management, Peking University,Beijing 100871,China)
Download: PDF (0 KB)  
Export: BibTeX | EndNote (RIS)      

The paper points out the difference between information filtering systems and other relevant systems. A framework is designed to classify information filtering systems under several standards and describe relevant filtering methods. The paper also describes some important concepts and technology in information filtering systems. And it discusses the elevation and shortcoming in information filtering systems. Finally, the paper describes the prospect of information filtering systems.

Key wordsInformation filtering      Classification      Technology      Elevation      Prospect     
Received: 28 February 2005      Published: 25 June 2005


Corresponding Authors: Cheng Ni     E-mail: jennifercn2004@126.lom
About author:: Cheng Ni,Cui Jianhai,Wang Jun

Cite this article:

Cheng Ni,Cui Jianhai,Wang Jun. Overview of Research on Foreign Information Filtering Systems. New Technology of Library and Information Service, 2005, 21(6): 30-38.

URL:     OR

1Oard, W. D.: 1997, The state of the art in text filtering, User Modeling and User Adapted Interaction (UMUAI) 7(3):141-178
2Kay, J. and Kummerfeld, R.: 1995, Customization and delivery of multimedia information.Technical Report, Basser Dept. of Computer Science, University of Sydney.
3Malone, T., Grant, K., Turbak, F., Brobst, S. and Cohen, M.: 1987, Intelligent information sharing systems. Communications of the ACM 30(5):390-402
4Morita, M. and Shinoda, Y.: 1994, Information filtering based on user behavior analysis and best match retrieval. Proceedings of the 17th Annual Intl. ACM SIGIR Conference on Research and Development:272-281
5Sheth, B.: 1994, A learning approach to personalized information filtering. Master's Thesis,Massachusetts Institute of Technology.
6Beerud, S.: 1994, New -A personalized information filtering system.
7Hofferer, M., Knaus, B. and Winiwarter, W.: 1994, Adaptive information extraction from online messages. Proceedings of Intelligent Multimedia Information Retrieval Systems and Management. RIAO 94:314-327
8Shapira, B., Hanani, U., Raveh, A. and Shoval, P.: 1997, Information filtering: A new two-phase model using stereotypic profiling. Journal of Intelligent Information Systems 8:155-165
9Shapira, B., Shoval, P. and Hanani, U.: 1997, Stereotypes in information filtering systems. Information Processing and Management 33(3):273-287
10Maes, P. and Kozierok, R.: 1993, Learning interface agents. Proceedings of AAAI, 459-465
11Shardanand, U. and Maes, P.: 1995, Social information filtering algorithms for automating Word of Mouth'. Proceedings of the 1995 ACM Conference on Human Factors in Computing Systems, 210-217
12Konstan, A., Bradley, N. M., Maltz, D., Herlocker, J. L., Gordon, L. R. and Riedl, J.: 1997, GroupLens:., Applying collaborative filtering to usenet news. Communications of the ACM 40(3):77-87
13Raskutti, B., Beitz, A. and Ward, B.: 1997, A feature-based approach to recommending selections based on past preferences. User Modeling and User-Adapted Interaction 7(3):179-218
14Balabanovic, M. and Shoham, Y.: 1997, Fab: Content-based collaborative recommendation.Comm. of the ACM 40(3):60-72
15Allen, R. B.: 1990, User models: Theory, methods and practice. Int. Journal of Man-Machine Studies 32:511-543
16Kass, R. and Finin, T.: 1989, The role of user models in cooperative interactive systems. Intl. Journal of Intelligent Systems 4:81-112
17Stadnyk, I. and Kass, R.: 1992, Modeling users' interests in information filters. Communications of the ACM 35(12):49-50
18McCleary, H.: 1994, Filtered information services -A revolutionary new product or a new marketing strategy? Online 4(18):35-42
19Stefani, A. and Strapparava, C.: 1999, Exploiting NLP techniques to build user model for Web sites: the use of WordNet in SiteIF Project. Second Workshop on Adaptive Systems and User Modeling on the World Wide Web, 8th International World Wide Web Conference, Toronto, Canada, May 11-14, 1999
20Foltz, P. W. and Dumais, S. T.: 1992, Personalized information delivery: An analysis of information filtering methods. Communications of the ACM 35(12):51-60
21Lang, K.: 1995, NewsWeeder: Learning the filter netnews. Proceedings of the Twelfth International Conference on Machine Learning, Lake Tahoe, CA, 331-339
22Bollacker, K. D.,Lawrence, S. and Giles, C. L.: 2000, Discovering relevant scientific literature on the web, IEEE Intelligent Systems March/April 2000 15(2):42-47
23Tjoa, A. M., Hofferer, M., Ehrentraut, G. and Untersmeyer, P.: 1997, Applying Evolutionary Algorithms to the Problem of Information Filtering 8th International Workshop on Database and Expert Systems Applications (DEXA '97), September 1-2, 1997, Toulouse, France.
24Desjardins, G. and Godin, R.: 2000, Combining Relevance Feedback and Genetic Algorithms in an Internet Information Filtering Engine. RIAO'2000 Conference Proceedings, Vol. 2, April 12-14, 2000, Paris, France, 1676-1685
25Rich, E.: 1989, Stereotypes and user modeling. In: A. Kobsa and W. Wahster (eds): User Models in Dialog Systems, Springer Verlag, 35-51
26Brajnik, G., Guida, G. and Tasso, C.: 1990, User modeling in expert man-machine interfaces: A case study in intelligent information retrieval. IEEE Transactions on Systems, Man and Cybernetics 20(1):166-185
27Kay, J.: 1990, Um: a user modeling toolkit. Second Int'l User Modeling Workshop, 11-51
28Frakes, W. B. and Baeza-Yates, R.: 1992, Information Retrieval: Data Structures and Algorithms. Englewood Cliffs, NJ: Prentice-Hall.
29Rocchio, J. J.: 1971, Performance indices for document retrieval. In: G. Salton (ed.): The SMART Retrieval System -Experiments in Automatic Document Processing, Englewood,NJ, 57-67
30Netscape: 2000,
31Microsoft: 2000,
32Wolinski, F., Vichot, F. and Stricker, M.: 2000, Using learning-based filters detect rule-based filtering obsolescence. RIAO'2000 Conference Proceedings, Vol. 2, April l2^14, 2000, Paris, France, 1208-1220
33Mock, K. J. and Vemuri Rao, V.: 1997, Information filtering via hill climbing, WordNet, and index patterns. Information Processing and Management 33(5):633-644
34Gurney, K.: 1996, An Introduction to Neural Networks. UCL Press, UK.
35Jennings, A. and Higuchi, H.: 1992, A personal news service based on a user model neural network. IEICE Transactions on Information and Systems E75-D(2):198-210
36Thomas, C. and Fisher, G.: 1996, Using agents to improve the usability an usefulness of the WWW. Proceedings of the 5th International Conference on User Modeling, 5-12
37Avery, C., Resnick, P. and Zeckhauser, R.: 1999, The market for evaluations. American Economics Review 89(3):564-584
38Amazon: 2000, Feb,8,2005)
39Oard, W. D.: 1998, Implicit Feedback for Recommender Systems. Proceedings of the American Association for Artificial Intelligence Workshop of Collaborative Systems(AAAI98), 80-83
40Yahoo: 2000, Feb,8,2005)
41Go (Infoseek): 2000,
42Jennings, A. and Higuchi, H: 1993, A user model neural network for a personal news service.User Modeling and User-Adapted Interaction 3(1):1-25
43Newell, S. C.: 1997, User models and filtering agents for improved internet information retrieval. User Modeling and User-Adapted Interaction 7(4):223-237
44Billsus, D. and Pazzani, M. J.: 1999a, A hybrid user model for news story classification. In: J.Kay (ed.): User Modeling: Proceedings of the Seventh International Conference, UM99,New York, Springer Wien, 99-108
45Billsus, D. and Pazzani, M. J.: 1999b, A personal news agent that talks, learns and explains. Proceedings of the Third Annual Conference on Autonomous Agents, May 1-5, 1999,Seattle, WA, USA, 268-275
46Baeza-Yates, R. and Ribeiro-Neto, B.: 1999, Modern Information Retrieval, New York: Addison-Wesley.
47Hull, D. A.: 1998, The TREC-6 filtering track: Description and analysis. The 6th Text Retrieval Conference (TREC-6), NIST SP 5-240, 45-68
48Su, L. T.: 1991, An investigation to find appropriate measures for information retrieval. Ph.D. thesis. Rutgers, State University of New Jersey, USA.
49Losee, R. M.: 1995, Determining information retrieval and filtering performance without experimentation. Information Processing and Management 31(4):555-572
50Belkin, N. J. and Croft, W. B.: 1992, Information filtering and information retrieval: Two sides of the same coin? Communications of the ACM 35(12):29-38
51Mostafa, J., Mukhopadhyay, S., Lam, W. and Palakal, M.: 1997, A multilevel approach to intelligent information filtering: Model, system and evaluation. ACM Transaction on Information Systems 15(4):368-399
52Shapira, B., Shoval, P. and Hanani, U.: 1999. Experimentation with an Information filtering, system that combines cognitive and sociological filtering integrated with user stereotypes.Decision Support Systems 27(1999):5-24
53Stadnyk, I. and Kass, R.: 1992, Modeling users' interests in information filters. Communications of the ACM 35(12):49-50
54Hull, D. A. and Robertson, S.: 2000, The TREC-8 filtering track: Final report. The 8th Text Retrieval Conference (TREC-7).
55Kuflik, T. and Shoval, P.: 2000, Generation of user profiles for information filtering - research agenda. Proceedings of the 23rd Annual International ACM SIGIR Conference on Research and Development Information Retrieval, July 24-28, 2000, Athens Greece,313-315
56Arampatzis, A. T., van der Weide, T. P., Koster, C. H. A. and van Bommel, P.: 2000, Term selection for filtering based on distribution of terms over time, RIAO'2000 Conference Proceedings, Vol. 2, April 12^14, Paris, France, 1221-1237
57Kautz, H., Bart, S. and Shah, M.: 1997: Combining social networks and collaborative filtering.Communications of the ACM 40(3), 63-65
58Losee, R. M.: 2000, When information retrieval measures agree about the relative quality of document rankings. Journal of the American Society for Information Science 51(9):834-840

[1] Yu Bengong, Zhu Mengdi. Question Classification Based on Bidirectional GRU with Hierarchical Attention and Multi-channel Convolution[J]. 数据分析与知识发现, 2020, 4(8): 50-62.
[2] Zhao Yang, Zhang Zhixiong, Liu Huan, Ding Liangping. Classification of Chinese Medical Literature with BERT Model[J]. 数据分析与知识发现, 2020, 4(8): 41-49.
[3] Wang Xinyun,Wang Hao,Deng Sanhong,Zhang Baolong. Classification of Academic Papers for Periodical Selection[J]. 数据分析与知识发现, 2020, 4(7): 96-109.
[4] Weng Mengjuan,Yao Changqing,Han Hongqi,Wang Lijun,Ran Yaxin. Classification and Indexing Method with CNN for Imbalanced Datasets[J]. 数据分析与知识发现, 2020, 4(7): 87-95.
[5] Tang Xiaobo,Gao Hexuan. Classification of Health Questions Based on Vector Extension of Keywords[J]. 数据分析与知识发现, 2020, 4(7): 66-75.
[6] Wang Sidi,Hu Guangwei,Yang Siyu,Shi Yun. Automatic Transferring Government Website E-Mails Based on Text Classification[J]. 数据分析与知识发现, 2020, 4(6): 51-59.
[7] Zhang Runtong,Chen Donghua,Zhao Hongmei,Zhu Xiaomin. Computer-Assisted ICD-11 Coding Method Based on Chinese Semantic Analysis[J]. 数据分析与知识发现, 2020, 4(4): 44-55.
[8] Yan Chun,Liu Lu. Classifying Non-life Insurance Customers Based on Improved SOM and RFM Models[J]. 数据分析与知识发现, 2020, 4(4): 83-90.
[9] Xu Yuemei,Liu Yunwen,Cai Lianqiao. Predicitng Retweets of Government Microblogs with Deep-combined Features[J]. 数据分析与知识发现, 2020, 4(2/3): 18-28.
[10] Shi Hongbo,Guo Hongmei,Yue Ting,Qian Li,Huang Dingyu,Chang Zhijun. Developing Modularity Scientometrics System with Distributed Technology[J]. 数据分析与知识发现, 2020, 4(2/3): 231-238.
[11] Ma Jianxia,Yuan Hui,Jiang Xiang. Extracting Name Entities from Ecological Restoration Literature with Bi-LSTM+CRF[J]. 数据分析与知识发现, 2020, 4(2/3): 78-88.
[12] Gong Lijuan,Wang Hao,Zhang Zixuan,Zhu Liping. Reducing Dimensions of Custom Declaration Texts with Word2Vec[J]. 数据分析与知识发现, 2020, 4(2/3): 89-100.
[13] Bengong Yu,Yumeng Cao,Yangnan Chen,Ying Yang. Classification of Short Texts Based on nLD-SVM-RF Model[J]. 数据分析与知识发现, 2020, 4(1): 111-120.
[14] Weimin Nie,Yongzhou Chen,Jing Ma. A Text Vector Representation Model Merging Multi-Granularity Information[J]. 数据分析与知识发现, 2019, 3(9): 45-52.
[15] Yunfei Shao,Dongsu Liu. Classifying Short-texts with Class Feature Extension[J]. 数据分析与知识发现, 2019, 3(9): 60-67.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938