Please wait a minute...
New Technology of Library and Information Service  2005, Vol. 21 Issue (8): 7-11    DOI: 10.11925/infotech.1003-3513.2005.08.02
article Current Issue | Archive | Adv Search |
Metadata Standard for Social Science Information Organization——DDI
Yang Bo   Hu Liyun
(School of Information and Archives Science, Yunnan University, Kunming 650091,China)
Download: PDF (0 KB)  
Export: BibTeX | EndNote (RIS)      

This paper introduces the history of DDI—a metadata standard used for social science information organization, analyzes DDI’s inner structure, concept model and compatibility with others. Then, some mature applications and tools for DDI data exchange are listed. Finally, several important issues that should be dealt with urgently are analyzed, and future directions are prospected

Key wordsDDI      Metadata      Social science      Information organization      Data exchange     
Received: 10 May 2005      Published: 25 August 2005


Corresponding Authors: Yang Bo     E-mail:
About author:: Yang Bo,Hu Liyun

Cite this article:

Yang Bo,Hu Liyun. Metadata Standard for Social Science Information Organization——DDI. New Technology of Library and Information Service, 2005, 21(8): 7-11.

URL:     OR

1 (Accessed Apr.10,2005 )
2 About ICPSR. (Accessed Apr.10,2005 )
3 About the DDI Alliance. (Accessed Apr.15,2005 )
4 About the Specification. (Accessed Mar.25,2005 )
5 XML Schema Outline. (Accessed Apr.15,2005 )
6 XML Schema Tag Library. (Accessed Apr.13,2005 )
7 STRUCTURAL REFORM GROUP. DDI VERSION 3.0 CONCEPTUAL MODEL., 2004, 6,10  (Accessed Apr.19,2005 )
8 Cooperation between XML Registries and Related Registries. (Accessed Apr.16,2005 )
9 Structural Reform Group Meeting(October 24-26, 2004). (Accessed Mar.22,2005 )
10 同9
11 Treadwell, W. (2000). "DDI: The Data Documentation Initiative - An Introduction to the Standard and its Role in Social Science Data Access." Cataloging the Web: Metadata, AACR and MARC21, In the ALCTS Papers on Library Technical Services and Collections series ed: Brad Eden. Mar.17,2005)
12 About Counting California. (Accessed Mar.17,2005)
13 CESSDA . (Accessed Apr.18,2005 )
14 CESSDA-DDI Workshop. (Accessed Apr.20,2005 )
15 HARVARD-MIT DATA CENTER. (Accessed Apr.12,2005 )
16 Altman et al. A Digital Library for the Dissemination and Replication of Quantitative Social Sc ience Research. Social Science Computer Review.2001; 19: 458-470
17 Publish your data on the Web with Nesstar 3.0. (Accessed Apr.10,2005)
18 Health Canada. From data to knowledge: standards and systems for sharing data and information across organizations (Canada) (Accessed Apr.23,2005 )
19 Survey Data Dissemination Toolkit. (Accessed Apr.22,2005)
20 DDI Tools. (Accessed Apr.6,2005 )
21 Strategic Plan( 2004-2006). (Accessed Mar.15,2005 )


[1] Wei Tingxin,Bai Wenlei,Qu Weiguang. Sense Prediction for Chinese OOV Based on Word Embedding and Semantic Knowledge[J]. 数据分析与知识发现, 2020, 4(6): 109-117.
[2] Li Chengliang,Zhao Zhongying,Li Chao,Qi Liang,Wen Yan. Extracting Product Properties with Dependency Relationship Embedding and Conditional Random Field[J]. 数据分析与知识发现, 2020, 4(5): 54-65.
[3] Su Chuandong,Huang Xiaoxi,Wang Rongbo,Chen Zhiqun,Mao Junyu,Zhu Jiaying,Pan Yuhao. Identifying Chinese / English Metaphors with Word Embedding and Recurrent Neural Network[J]. 数据分析与知识发现, 2020, 4(4): 91-99.
[4] Yu Chuanming,Zhong Yunci,Lin Aochen,An Lu. Author Name Disambiguation with Network Embedding[J]. 数据分析与知识发现, 2020, 4(2/3): 48-59.
[5] Xinyu Zai,Xuedong Tian. Retrieving Scientific Documents with Formula Description Structure and Word Embedding[J]. 数据分析与知识发现, 2020, 4(1): 131-138.
[6] Hong Pan,Li Tang. Qualitative Data Analysis in Chinese Social Science Studies——The Case of Nvivo[J]. 数据分析与知识发现, 2020, 4(1): 51-62.
[7] Xuhui Li,Tao Yu,Ting Li,Yiwen Li,Jinguang Gu. An Evolutionary Schema for Metadata Description[J]. 数据分析与知识发现, 2020, 4(1): 76-88.
[8] Hui Nie,Huan He. Identifying Implicit Features with Word Embedding[J]. 数据分析与知识发现, 2020, 4(1): 99-110.
[9] Yan Yu,Lei Chen,Jinde Jiang,Naixuan Zhao. Measuring Patent Similarity with Word Embedding and Statistical Features[J]. 数据分析与知识发现, 2019, 3(9): 53-59.
[10] Qingtian Zeng,Xiaohui Hu,Chao Li. Extracting Keywords with Topic Embedding and Network Structure Analysis[J]. 数据分析与知识发现, 2019, 3(7): 52-60.
[11] Jinzhu Zhang,Yiming Hu. Extracting Titles from Scientific References in Patents with Fusion of Representation Learning and Machine Learning[J]. 数据分析与知识发现, 2019, 3(5): 68-76.
[12] Peiyao Zhang,Dongsu Liu. Topic Evolutionary Analysis of Short Text Based on Word Vector and BTM[J]. 数据分析与知识发现, 2019, 3(3): 95-101.
[13] Li Lin,Li Hui. Computing Text Similarity Based on Concept Vector Space[J]. 数据分析与知识发现, 2018, 2(5): 48-58.
[14] Wang Tingting,Han Man,Wang Yu. Optimizing LDA Model with Various Topic Numbers: Case Study of Scientific Literature[J]. 数据分析与知识发现, 2018, 2(1): 29-40.
[15] Zhang Qin,Guo Hongmei,Zhang Zhixiong. Extracting Entity Relationship with Word Embedding Representation Features[J]. 数据分析与知识发现, 2017, 1(9): 8-15.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938