Please wait a minute...
New Technology of Library and Information Service  2005, Vol. 21 Issue (8): 27-31    DOI: 10.11925/infotech.1003-3513.2005.08.07
Current Issue | Archive | Adv Search |
KIM—An Information Retrieval System Based on Ontology
Hou Yufang   Geng Qian
(Management School of Beijing Normal University, Beijing 100088,China)
Download: PDF (0 KB)  
Export: BibTeX | EndNote (RIS)      

The KIM platform is a typical information retrieval system based on Ontology, it provides a novel knowledge and information management infrastructure and services for automatic semantic annotation, indexing, and retrieval of documents.The paper analyses the system in detail.

Key wordsOntology      Information retrieval      KIM     
Received: 19 May 2005      Published: 25 August 2005


Corresponding Authors: Hou Yufang     E-mail:
About author:: Hou Yufang,Geng Qian

Cite this article:

Hou Yufang,Geng Qian. KIM—An Information Retrieval System Based on Ontology. New Technology of Library and Information Service, 2005, 21(8): 27-31.

URL:     OR

1Borislav Popov,Atanas Kiryakov,Angel Kirilov,Dimitar Manov,Damyan Ognyanoff,Miroslav Goranov.KIM\|Semantic Annotation Platform. 2nd International Semantic Web Conference(ISWC2003),20-23 October 2003,Florida,USA.LNAI Vol.2870,pp.834-849,Springer\|Verlag Berlin Heidelberg 2003
2Atanas Kiryakov,Borislav Popov,Damyan Ognyanoff,Dimitar Manov,Angel Kirilov,Miroslav Goranov.Semantic Annotation,Indexing,and Retrieval. 2nd International Semantic Web Conference(ISWC2003),20-23 October 2003,Florida,USA.LNAI Vol.2870,pp.484-499,Springer\|Verlag Berlin Heidelberg 2003
3KIM Knowledeg Base. Feb.8,2005)
4Borislav Popov,Atanas Kiryakov,Damyan Ognyanoff,Dimitar Manov,Angel Kirilov,Miroslav Goranov,Towards Semantic Web Information Extraction.Human Language Technologies Workshop at the 2nd International Semantic Web Conference(ISWC2003),20 October 2003, Florida,USA
5A General KIM Platfor Presentation. Feb.9,2005)

[1] Mingxuan Huang,Shoudong Lu,Hui Xu. Cross-Language Information Retrieval Based on Weighted Association Patterns and Rule Consequent Expansion[J]. 数据分析与知识发现, 2019, 3(9): 77-87.
[2] Shaohua Qiang,Yunlu Luo,Yupeng Li,Peng Wu. Ontology Reasoning for Financial Affairs with RBR and CBR[J]. 数据分析与知识发现, 2019, 3(8): 94-104.
[3] Shiqi Deng,Liang Hong. Constructing Domain Ontology for Intelligent Applications: Case Study of Anti Tele-Fraud[J]. 数据分析与知识发现, 2019, 3(7): 73-84.
[4] Zhu Fu,Yuefen Wang,Xuhui Ding. Semantic Representation of Design Process Knowledge Reuse[J]. 数据分析与知识发现, 2019, 3(6): 21-29.
[5] Guangshang Gao. A Survey of User Profiles Methods[J]. 数据分析与知识发现, 2019, 3(3): 25-35.
[6] Ying Wang,Li Qian,Jing Xie,Zhijun Chang,Beibei Kong. Building Knowledge Graph with Sci-Tech Big Data[J]. 数据分析与知识发现, 2019, 3(1): 15-26.
[7] He Youshi,He Shufang. Sentiment Mining of Online Product Reviews Based on Domain Ontology[J]. 数据分析与知识发现, 2018, 2(8): 60-68.
[8] Sun Haixia,Wang Lei,Wu Yingjie,Hua Weina,Li Junlian. Matching Strategies for Institution Names in Literature Database[J]. 数据分析与知识发现, 2018, 2(8): 88-97.
[9] Tang Huihui,Wang Hao,Zhang Zixuan,Wang Xueying. Extracting Names of Historical Events Based on Chinese Character Tags[J]. 数据分析与知识发现, 2018, 2(7): 89-100.
[10] Pang Beibei,Gou Juanqiong,Mu Wenxin. Extracting Topics and Their Relationship from College Student Mentoring[J]. 数据分析与知识发现, 2018, 2(6): 92-101.
[11] Ding Shengchun,Liu Menglu,Fu Zhu. Unified Multidimensional Model Based on Knowledge Flow in Conceptual Design[J]. 数据分析与知识发现, 2018, 2(2): 11-19.
[12] Tu Haili,Tang Xiaobo. Building Product Recommendation Model Based on Tags[J]. 数据分析与知识发现, 2017, 1(9): 28-39.
[13] Yang Chaofan,Deng Zhonghua,Peng Xin,Liu Bin. Review of Information Retrieval Research: Case Study of Conference Papers[J]. 数据分析与知识发现, 2017, 1(7): 35-43.
[14] Chen Erjing,Jiang Enbo. Review of Studies on Text Similarity Measures[J]. 数据分析与知识发现, 2017, 1(6): 1-11.
[15] Bai Rujiang,Leng Fuhai,Liao Junhua. An Improved Cosine Text Similarity Computing Method Based on Semantic Chunk Feature[J]. 数据分析与知识发现, 2017, 1(6): 56-64.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938