Please wait a minute...
New Technology of Library and Information Service  2005, Vol. 21 Issue (11): 86-90    DOI: 10.11925/infotech.1003-3513.2005.11.18
Current Issue | Archive | Adv Search |
Parsing XML Document with JDOM and Its Application in Data Exchange
Zhang Hua   Dong Hui
( School of Information Management of Wuhan University, Wuhan 430072, China)
Download: PDF(0 KB)   HTML  
Export: BibTeX | EndNote (RIS)      

XML has been becoming the criterion of international interchange, and Java is well known of its remarkable characteristic—platform-independence. This paper tries to combine their advantages, using JDOM to extract the useful data from database and save them as XML document according to specified style in order to meet the needs of data being displayed in multiple expressions and exchanged in the heterogeneous database environment.

Key wordsJava      XML      SAX      DOM      JDOM     
Received: 12 August 2005      Published: 25 November 2005


Corresponding Authors: Zhang Hua     E-mail:
About author:: Zhang Hua,Dong Hui

Cite this article:

Zhang Hua,Dong Hui. Parsing XML Document with JDOM and Its Application in Data Exchange. New Technology of Library and Information Service, 2005, 21(11): 86-90.

URL:     OR

2[美]Horstman.C.S等著,程峰等译. Java2核心技术卷Ⅰ.第六版,北京:机械工业出版社,2003
4XML的四种解析器原理及性能分析比较 Dec.8, 2004)
5 Dec.8, 2004)
6使用JDBC将数据抽取到XML中 Dec.8, 2004)

[1] Han Huang,Hongyu Wang,Xiaoguang Wang. Automatic Recognizing Legal Terminologies with Active Learning and Conditional Random Field Model[J]. 数据分析与知识发现, 2019, 3(6): 66-74.
[2] Wancheng Chen,Haoran Dai,Yinghan Jin. Appraising Home Prices with HEDONIC Model: Case Study of Seattle, U.S.[J]. 数据分析与知识发现, 2019, 3(5): 19-26.
[3] Zhiqiang Liu,Yuncheng Du,Shuicai Shi. Extraction of Key Information in Web News Based on Improved Hidden Markov Model[J]. 数据分析与知识发现, 2019, 3(3): 120-128.
[4] Jiaxin Ye,Huixiang Xiong. Recommending Personalized Contents from Cross-Domain Resources Based on Tags[J]. 数据分析与知识发现, 2019, 3(2): 21-32.
[5] Xiangdong Li,Fan Gao,Youhai Li. Categorizing Documents Automatically within Common Semantic Space[J]. 数据分析与知识发现, 2018, 2(9): 66-73.
[6] Youshi He,Shufang He. Sentiment Mining of Online Product Reviews Based on Domain Ontology[J]. 数据分析与知识发现, 2018, 2(8): 60-68.
[7] Cheng Zhou,Hongqin Wei. Identifying Crowd Participants with Modified Random Forests Algorithm[J]. 数据分析与知识发现, 2018, 2(7): 46-54.
[8] Huihui Tang,Hao Wang,Zixuan Zhang,Xueying Wang. Extracting Names of Historical Events Based on Chinese Character Tags[J]. 数据分析与知识发现, 2018, 2(7): 89-100.
[9] Yuan Chen,Chaoqun Wang,Zhongyi Hu,Jiang Wu. Identifying Malicious Websites with PCA and Random Forest Methods[J]. 数据分析与知识发现, 2018, 2(4): 71-80.
[10] Weijian Ni,Haohao Sun,Tong Liu,Qingtian Zeng. An Unsupervised Approach to Optimize Chinese Word Segmentation on Domain Literature[J]. 数据分析与知识发现, 2018, 2(2): 96-104.
[11] Liyi Zhang,Yiran Li,Xuan Wen. Predicting Repeat Purchase Intention of New Consumers[J]. 数据分析与知识发现, 2018, 2(11): 10-18.
[12] Yan Yu,Naixuan Zhao. Choosing Stopwords for Patent Topic Analysis Based on Auxiliary Set[J]. 数据分析与知识发现, 2018, 2(11): 95-103.
[13] Chuanming Yu,Bolin Feng,Lu An. Sentiment Analysis in Cross-Domain Environment with Deep Representative Learning[J]. 数据分析与知识发现, 2017, 1(7): 73-81.
[14] Xiaoyu Wang,Bin Li. Automatically Segmenting Middle Ancient Chinese Words with CRFs[J]. 数据分析与知识发现, 2017, 1(5): 62-70.
[15] Qingqing Zhang,Xilin Liu. Classifying Sentiments Based on BPSO Random Subspace[J]. 数据分析与知识发现, 2017, 1(5): 71-81.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938