Please wait a minute...
New Technology of Library and Information Service  2005, Vol. 21 Issue (12): 48-50    DOI: 10.11925/infotech.1003-3513.2005.12.11
Current Issue | Archive | Adv Search |
Research on the Comprehensive Evaluation of Information System Based on Preference DEA Model
Yu Xiuyan   Li Minghui
(Department of Management, Shandong University of Technology, Zibo 255049, China)
Download: PDF (0 KB)  
Export: BibTeX | EndNote (RIS)      

The preference DEA model is put forward based on the traditional DEA model to solve the comprehensive evaluation, and to solve the same efficient DMU with the average cross-efficiency. The preference DEA model is applied to the evaluation of information system. The result shows that the preference DEA model reflects the preference and offers lots of information for decision-makers.

Key wordsPreference      Information system      Comprehensive evaluation      DEA model     
Received: 29 September 2005      Published: 25 December 2005


Corresponding Authors: Yu Xiuyan,Li Minghui     E-mail:
About author:: Yu Xiuyan,Li Minghui

Cite this article:

Yu Xiuyan,Li Minghui. Research on the Comprehensive Evaluation of Information System Based on Preference DEA Model. New Technology of Library and Information Service, 2005, 21(12): 48-50.

URL:     OR

3Kenneth C Laudon, Jane P Laudon.Management information system.New Approaches to Organization and Technology, 5th ed. Prentice-Hall, Inc, New Jersey,1998

[1] Zhang Tingting,Zhao Yuxiang,Zhu Qinghua. Mining User Preferences in Crowdsourcing Community with Sensitivity Analysis[J]. 数据分析与知识发现, 2018, 2(5): 23-31.
[2] Zhang Suqi,Gao Xing,Huo Shijie,Guo Jingjin,Gu Junhua. A Label Propagation Algorithm Based on Speed Optimization and Community Preference[J]. 数据分析与知识发现, 2018, 2(3): 60-69.
[3] Yin Cong,Zhang Liyi. Recommendation Algorithm for Post-Context Filtering Based on TF-IDF: Case Study of Catering O2O[J]. 数据分析与知识发现, 2018, 2(11): 28-36.
[4] Tu Haili,Tang Xiaobo. Building Product Recommendation Model Based on Tags[J]. 数据分析与知识发现, 2017, 1(9): 28-39.
[5] Hou Yinxiu,Li Weiqing,Wang Weijun,Zhang Tingting. Personalized Book Recommendation Based on User Preferences and Commodity Features[J]. 数据分析与知识发现, 2017, 1(8): 9-17.
[6] Zhu Peng,Zhao Xiaoxiao,Wu Wei. Factors Influencing Mobile E-commerce Consumers’ Preferences: An Empirical Study[J]. 数据分析与知识发现, 2017, 1(3): 1-9.
[7] Yue Zijing,Zhang Chengzhi,Zhou Qingqing. Studying Dietary Preferences of Chinese Residents[J]. 数据分析与知识发现, 2017, 1(11): 84-93.
[8] Yin Xihong, Qiao Xiaodong, Zhang Yunliang, Li Guoshuang. Fuzzy Classification Method Based on Particle Swarm Optimization and Fuzzy Comprehensive Evaluation[J]. 现代图书情报技术, 2015, 31(9): 46-51.
[9] Song Meiqing. Research on Multi-granularity Users' Preference Mining Based on Collaborative Filtering Personalized Recommendation[J]. 现代图书情报技术, 2015, 31(12): 28-33.
[10] Wang Weijun, Song Meiqing. A Collaborative Filtering Personalized Recommendation Algorithm Through Directionally Mining Users’ Preferences[J]. 现代图书情报技术, 2014, 30(6): 25-32.
[11] Zhao Yan, Wang Yamin. Model for Personalized Recommendation Based on Social Tagging in P2P Environment[J]. 现代图书情报技术, 2014, 30(5): 50-57.
[12] Zhao Yuxiang,Peng Xixian. Media as a Community? Literature Based Topic Evaluation in Information Systems Discipline[J]. 现代图书情报技术, 2014, 30(1): 56-65.
[13] Zhu Hengmin, Jia Danhua, Huang Zhenqi, Wang Chunhui. Study on Instance Learning Method of Internet User Preference Ontology[J]. 现代图书情报技术, 2013, 29(7/8): 43-48.
[14] Li Kechao, Lan Dongmei, Ling Xiaoe. Research of Books Recommendation of Borrow Preference Uncertainty in University Readers Based on Cloud Model and Multi-feature[J]. 现代图书情报技术, 2013, (5): 54-58.
[15] Xu Yingnan. Analysis of Commodity Parameters Browsing Preference in Consumer’s Online Shopping Decision-making——Taking Digital Camera for Example[J]. 现代图书情报技术, 2012, (12): 52-57.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938