Please wait a minute...
New Technology of Library and Information Service  2005, Vol. 21 Issue (12): 51-54    DOI: 10.11925/infotech.1003-3513.2005.12.12
Current Issue | Archive | Adv Search |
Web Document Classification Method Based on Variable Precision Rough Set Model
Wang Xiaoyue   Bai Rujiang
(The Library of Shandong University of Technology, Zibo 255049,China)
Download: PDF(0 KB)   HTML  
Export: BibTeX | EndNote (RIS)      
Abstract  

After study on the variable precision rough sets model, this paper adopts variable precision rough sets model to classificate the Web documents.β is introduced, which allows to realize various classification levels of the Web documentsat according to the user’s demand through adusting β value.  The experiment results show that this method can effectively increase the classification flexibility under classification accuracy premise.

Key wordsVariable precision rough set      Attribute reduction      Document classification     
Received: 05 September 2005      Published: 25 December 2005
: 

TP391

 
Corresponding Authors: Bai Rujiang     E-mail: brj@sdut.edu.cn
About author:: Wang Xiaoyue,Bai Rujiang

Cite this article:

Wang Xiaoyue,Bai Rujiang. Web Document Classification Method Based on Variable Precision Rough Set Model. New Technology of Library and Information Service, 2005, 21(12): 51-54.

URL:

http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/10.11925/infotech.1003-3513.2005.12.12     OR     http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/Y2005/V21/I12/51

1Z.Pawlak.Rough set theory and its application to data analysis. Cybernetics and system: An International Journal, 29: 661-668, 1998
2Pawalk Z. Rough sets. theoretical aspects of reasoning about data. Dordrecht: Kluwer Academic Publishers ,1991
3Ziarko W. Variable precision rough set model. Journal of Computer and System Sciences, 1993, 46 (1):39- 59
4Y.Y. Yao. A comparative study of fuzzy sets and rough sets, Journal of Information Science, 109, 227-242, 1998
5J.N. Mordeson. Rough set theory applied to (fuzzy) ideal theory, Fuzzy Sets and Systems, 121, 315-324, 2001
6Z. Pawlak. Rough sets and intelligent data analysis, Information Science, 147, 1-12, 2002.S. Greco, B. Matarazzo, R. Slowinski. Rough set processing of vague information using fuzzy similarity relations, in: C.S. Calude, G. Paun (Eds.), Finite Versus Infinite–Contributions to an Eternal Dilemma, Springer-Verlag, London, 149–173, 2002
7R. Slowinski, S. Greco, B. Matarazzo. Fuzzy rough sets applied to multicriteria and multiattribute classification, in: Z. Suraj (Ed.), Proceedings of Sixth International Conference on Soft Computing and Distributed Processing, Rzeszow, June 24–25, 129–132, 2002.

[1] Lin Li,Hui Li. Computing Text Similarity Based on Concept Vector Space[J]. 数据分析与知识发现, 2018, 2(5): 48-58.
[2] Liu Hongguang,Ma Shuanggang,Liu Guifeng. Classifying Chinese News Texts with Denoising Auto Encoder[J]. 现代图书情报技术, 2016, 32(6): 12-19.
[3] Tan Jinbo . An Improved Hierarchical Document Classification Method[J]. 现代图书情报技术, 2007, 2(2): 56-59.
[4] Bai Rujiang . A Hybrid Classifier Based on the Rough Sets and RBF Neural Networks[J]. 现代图书情报技术, 2006, 1(6): 47-51.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938   E-mail:jishu@mail.las.ac.cn