Please wait a minute...
New Technology of Library and Information Service  2005, Vol. 21 Issue (12): 55-58    DOI: 10.11925/infotech.1003-3513.2005.12.13
Current Issue | Archive | Adv Search |
The Prototype Research of Open Linking Service  Based on the OpenURL
Wu Chunfeng1    Shi Shuicai2
1(Beijing Institute of Machinery,Beijing 100101,China)
2(Beijing Information Technology Institute,Beijing 100101,China)
Download: PDF(0 KB)   HTML  
Export: BibTeX | EndNote (RIS)      

This is an article about linking service based on the OpenURL 1.0.It explains the problems with traditional linking,and it also introduces alternative to the traditional linking,which is OpenURL. It discusses the prototype architecture of link server,which uses OpenURL to provide users with context-sensitive links.The paper focuses on practical consideration in the implementation of link server.

Key wordsOpenURL      Open linking service      Knowledge base      Source      Target     
Received: 19 October 2005      Published: 25 December 2005


Corresponding Authors: Wu Chunfeng     E-mail:
About author:: Wu Chunfeng,Shi Shuicai

Cite this article:

Wu Chunfeng,Shi Shuicai. The Prototype Research of Open Linking Service  Based on the OpenURL. New Technology of Library and Information Service, 2005, 21(12): 55-58.

URL:     OR

1Van de Sompel,Herbert,and Hochstenbach,Patrick, Reference Linking in a Hybrid Library Environment,Part 1:Frameworks for Linking,D-Lib Magazine,5.4(April,1999).  May.10,2005)
2ANSI/NISO Z39.88-2004, Part 1. The OpenURL Framework for Context-Sensitive Services: ContextObject and Transport Mechanisms.
3ANSI/NISO Z39.88-2004, Part 2. The OpenURL Framework for Context-Sensitive Services: Initial Registry Content.
4Van de Sompel,Herbert,and Hochstenbach,Patrick,Reference Linking in a Hybrid Library Environment,Part 3:Generalizing the SFX solution in the “SFX@Ghent & SFX@LANL” experiment,D-Lib Magazine,5.10(October,1999). (Accessed  May.10,2005)

[1] Ru Li,Rui Li,Jie Jiang,Huayi Wu. Spatio-Temporal Characteristics of WMTS Access Sessions[J]. 数据分析与知识发现, 2019, 3(6): 1-11.
[2] Ruihua Qi,Junyi Zhou,Xu Guo,Caihong Liu. Extracting Book Review Topics with Knowledge Base[J]. 数据分析与知识发现, 2019, 3(6): 83-91.
[3] Guangshang Gao. Reviewing Basic Methods of Entity Resolution[J]. 数据分析与知识发现, 2019, 3(5): 27-40.
[4] Shengchun Ding,Linlin Hou,Ying Wang. Product Knowledge Map Construction Based on the E-commerce Data[J]. 数据分析与知识发现, 2019, 3(3): 45-56.
[5] Jiaxin Ye,Huixiang Xiong. Recommending Personalized Contents from Cross-Domain Resources Based on Tags[J]. 数据分析与知识发现, 2019, 3(2): 21-32.
[6] Chonghui Guo,Minqian Li. Evaluating Web Information for Ancient Villages Based on Rank Aggregation[J]. 数据分析与知识发现, 2018, 2(4): 10-19.
[7] Xinyue Fan,Lei Cui. Predicting Antineoplastic Drug Targets Based on Network Properties[J]. 数据分析与知识发现, 2018, 2(12): 98-108.
[8] Zhongyi Liu,Chenwang Hu,Kun Tan,Yan Gao. Optimizing Anti-terrorist Policing with Queueing Theory[J]. 数据分析与知识发现, 2018, 2(10): 37-45.
[9] Zhiqiang Zhang,Shaoping Fan,Xiujuan Chen. Biomedical Informatics Studies for Knowledge Discovery in Precision Medicine[J]. 数据分析与知识发现, 2018, 2(1): 1-8.
[10] Cao Yang, Fan Wenfei, Yuan Tengfei. Is Big Data Analytics Beyond the Reach of Small Companies?[J]. 数据分析与知识发现, 2017, 1(9): 1-7.
[11] Jing Yan,Qiang Bi,Jie Li,Fu Wang. Construction of Aggregation Quality Predicting Model for Digital Resource in Library ——Based on Improved Genetic Algorithm and BP Neural Network[J]. 数据分析与知识发现, 2017, 1(12): 49-62.
[12] Guo Chen,Lu Xiao. Linking Knowledge Elements from Online Community[J]. 数据分析与知识发现, 2017, 1(11): 75-83.
[13] Cong Wu,Yuxiang Zhao,Qinghua Zhu. Analyzing Crowdfunding Videos Based on Task Presentation——Case Study of[J]. 数据分析与知识发现, 2017, 1(10): 64-76.
[14] Wu Huijuan,Jia Tina Du,Sun Hongfei,Jannatul Fardous. Identifying Core Users in Social Resource Recommendation System with K-shell Collapse Sequences[J]. 现代图书情报技术, 2016, 32(9): 58-64.
[15] Yu Liping. New Method to Evaluate Academic Journals: Case Study of Mathematics Journals[J]. 现代图书情报技术, 2016, 32(7-8): 94-100.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938