Please wait a minute...
New Technology of Library and Information Service  2006, Vol. 22 Issue (1): 3-9    DOI: 10.11925/infotech.1003-3513.2006.01.02
article Current Issue | Archive | Adv Search |
SKOS Core: Simple Knowledge Organisation for the Web
Alistair Miles1  Brian Matthews1  Michael Wilson1  Dan Brickley2
1(CCLRC Rutherford Appleton Laboratory, UK)
2(World Wide Web Consortium)
Download: PDF(0 KB)   HTML  
Export: BibTeX | EndNote (RIS)      

This paper introduces SKOS Core, an RDF vocabulary for expressing the basic structure and content of concept schemes (thesauri, classification schemes, subject heading lists, taxonomies, terminologies, glossaries and other types of controlled vocabulary).  SKOS Core is published and maintained by the W3C Semantic Web Best Practices and Deployment Working Group.  The main purpose of this paper is to provide an initial basis for establishing clear recommendations for the use of SKOS Core and DCMI Metadata Terms in combination.  Also discussed are management policies for SKOS Core and other RDF vocabularies, and the relationship between a “SKOS concept scheme” and an “RDFS/OWL Ontology”.

Key wordsKnowledge organization systems      KOS      Taxonomies      Thesauri      Classification schemes      Glossaries      RDF      OWL      Semantic Web      Metadata vocabularies     
Received: 08 November 2005      Published: 25 January 2006
Corresponding Authors: Alistair Miles     E-mail:
About author:: Alistair Miles,Brian Matthews,Michael Wilson,Dan Brickley

Cite this article:

Alistair Miles,Brian Matthews,Michael Wilson,Dan Brickley. SKOS Core: Simple Knowledge Organisation for the Web. New Technology of Library and Information Service, 2006, 22(1): 3-9.

URL:     OR

[1] Haici Yang,Jun Wang. Visualizing Knowledge Graph of Academic Inheritance in Song Dynasty[J]. 数据分析与知识发现, 2019, 3(6): 109-116.
[2] Zhu Fu,Yuefen Wang,Xuhui Ding. Semantic Representation of Design Process Knowledge Reuse[J]. 数据分析与知识发现, 2019, 3(6): 21-29.
[3] Ruihua Qi,Junyi Zhou,Xu Guo,Caihong Liu. Extracting Book Review Topics with Knowledge Base[J]. 数据分析与知识发现, 2019, 3(6): 83-91.
[4] Yujie Cao,Jin Mao,Rongqing Pan,Zhichao Ba,Gang Li. Analyzing Characteristics of Interdisciplinary Research Evolutions: Case Study of Medical Informatics[J]. 数据分析与知识发现, 2019, 3(5): 107-116.
[5] Xiaolan Wu,Chengzhi Zhang. Analysis of Knowledge Flow Based on Academic Social Networks:
A Case Study of
[J]. 数据分析与知识发现, 2019, 3(4): 107-116.
[6] Yuxin Peng,Zhaohua Deng,Jiang Wu. Analysis of Knowledge Sharing Behavior of Medical Professional Users in Online Health Communities Based on Social Capital and Motivation Theory[J]. 数据分析与知识发现, 2019, 3(4): 63-70.
[7] Zhiqiang Wu,Zhongming Zhu,Wei Liu,Sili Wang. Research and Practice on the Extension of Knowledge Analysis and Visualization Function in CSpace[J]. 数据分析与知识发现, 2019, 3(3): 112-119.
[8] Hongxia Xu,Chunwang Li. Review of Knowledge Extraction of Scientific Literature[J]. 数据分析与知识发现, 2019, 3(3): 14-24.
[9] Shengchun Ding,Linlin Hou,Ying Wang. Product Knowledge Map Construction Based on the E-commerce Data[J]. 数据分析与知识发现, 2019, 3(3): 45-56.
[10] Juhua Wu,Yu Wang,Ming Li,Shaoyun Cai. Knowledge Discovery of Online Health Communities with Weighted Knowledge Network[J]. 数据分析与知识发现, 2019, 3(2): 108-117.
[11] Ying Wang,Li Qian,Jing Xie,Zhijun Chang,Beibei Kong. Building Knowledge Graph with Sci-Tech Big Data[J]. 数据分析与知识发现, 2019, 3(1): 15-26.
[12] Li Yu,Li Qian,Changlei Fu,Huaming Zhao. Extracting Fine-grained Knowledge Units from Texts with Deep Learning[J]. 数据分析与知识发现, 2019, 3(1): 38-45.
[13] Li Qian,Jing Xie,Zhijun Chang,Zhenxin Wu,Dongrong Zhang. Designing Smart Knowledge Services with Sci-Tech Big Data[J]. 数据分析与知识发现, 2019, 3(1): 4-14.
[14] Jiying Hu,Jing Xie,Li Qian,Changlei Fu. Constructing Big Data Platform for Sci-Tech Knowledge Discovery with Knowledge Graph[J]. 数据分析与知识发现, 2019, 3(1): 55-62.
[15] Jing Li,Xiao Liu,Xiaoli Wang. Financial Decision Knowledge Acquisition Based on Neighborhood Rough Set and Ensemble Classifiers with Grid Search[J]. 数据分析与知识发现, 2019, 3(1): 85-94.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938