Please wait a minute...
New Technology of Library and Information Service  2006, Vol. 1 Issue (3): 51-54    DOI: 10.11925/infotech.1003-3513.2006.03.11
Current Issue | Archive | Adv Search |
Research on OWL Knowledge Representation Method Based on Curriculum System
Yu Juan   Wang Jianzhen   Ma Jinping   Li Yong
(Department of Management Science and Engineering, Qingdao University, Qingdao 266071,China)
Download: PDF(0 KB)   HTML  
Export: BibTeX | EndNote (RIS)      

A teaching and researching aid system platform based on Semantic Web is developed to help university teachers and students in information retrieval and knowledge obtaining so that they can grasp the latest development of their fields. This paper probes into the knowledge representation method of the system platform. It advances a method that uses Web Ontology Language (OWL) as the representation language, the curriculum system as the basement and course content as the representing content. It explains the implement of this representation method with an application. This knowledge representing method is proper for all kinds of digital knowledge.

Key wordsSemantic Web      OWL      Knowledge representation      Curriculum system      Teaching and researching aid system     
Received: 26 December 2005      Published: 25 March 2006


Corresponding Authors: Yu Juan     E-mail:
About author:: Yu Juan,Wang Jianzhen,Ma Jinping,Li Yong

Cite this article:

Yu Juan,Wang Jianzhen,Ma Jinping,Li Yong . Research on OWL Knowledge Representation Method Based on Curriculum System. New Technology of Library and Information Service, 2006, 1(3): 51-54.

URL:     OR

1Tim Berners-Lee. Semantic Web-XML2000, Dec.02, 2004)
2W3C. Semantic Web Activity Statement. Dec.02, 2004)
3Graham Klyne; Jeremy J. Carroll. Resource Description Framework (RDF): Concepts and Abstract Syntax. Jul.14, 2004)
4Brickley D; Guha R. Resource Description Framework (RDF) Schema Specification. Jul.14, 2004)
5Tim Berners-Lee; et al. Some Notes on the differences Between DAML+OIL and OIL. Sep.26, 2004)
6Uche Ogbuji;Roxane Ouellet. DAML Reference. Sep.26, 2004)
7Connolly D; et al. DAML+OIL (March 2001) Reference Description, W3C Note. Sep.26, 2004)
8Michael K. Smith; Chris Welty; et al. OWL Web Ontology Language Guide. Jan.1, 2005)
9Deborah L. McGuinness; et al. OWL Web Ontology Language Overview. Jan.1, 2005)
10陈文彬. Ontology在图书服务网络中的应用. 现代图书情报技术, 2003, 104(6): 8-12
11Thompson H S; et al. XML Schema Part 1: Structures. Jun 18, 2005)
12Matthew Horridge; Holger Knublauch; et al. A practical guide to building OWL ontology using the protégé-OWL Plugin and CO-ODE tools. The University of Manchester, 2004.8
13Sean Bechhofer; Raphael Volz; Phillip Lord. Cooking the Semantic Web with the OWL API. Springer-Verlag GmbH, 2003, 2870(10): 659-675
14Alan Rector. Representing Specified Values in OWL: "value partitions" and "value sets". May.21, 2005)
15Mike Dean; Guus Schreiber; et al. OWL Web Ontology Language Reference. Jan.1, 2005)
16Frank Manola; Eric Miller. RDF Primer Sep.26, 2004)
17Su. H; Kramer D; et al. XEM: Managing the evolution of XML documents. 11th International Workshop on Research Issues on Data Engineering. US: IEEE, 2001:103-110

[1] Haici Yang,Jun Wang. Visualizing Knowledge Graph of Academic Inheritance in Song Dynasty[J]. 数据分析与知识发现, 2019, 3(6): 109-116.
[2] Zhu Fu,Yuefen Wang,Xuhui Ding. Semantic Representation of Design Process Knowledge Reuse[J]. 数据分析与知识发现, 2019, 3(6): 21-29.
[3] Ruihua Qi,Junyi Zhou,Xu Guo,Caihong Liu. Extracting Book Review Topics with Knowledge Base[J]. 数据分析与知识发现, 2019, 3(6): 83-91.
[4] Yujie Cao,Jin Mao,Rongqing Pan,Zhichao Ba,Gang Li. Analyzing Characteristics of Interdisciplinary Research Evolutions: Case Study of Medical Informatics[J]. 数据分析与知识发现, 2019, 3(5): 107-116.
[5] Xiaolan Wu,Chengzhi Zhang. Analysis of Knowledge Flow Based on Academic Social Networks:
A Case Study of
[J]. 数据分析与知识发现, 2019, 3(4): 107-116.
[6] Yuxin Peng,Zhaohua Deng,Jiang Wu. Analysis of Knowledge Sharing Behavior of Medical Professional Users in Online Health Communities Based on Social Capital and Motivation Theory[J]. 数据分析与知识发现, 2019, 3(4): 63-70.
[7] Zhiqiang Wu,Zhongming Zhu,Wei Liu,Sili Wang. Research and Practice on the Extension of Knowledge Analysis and Visualization Function in CSpace[J]. 数据分析与知识发现, 2019, 3(3): 112-119.
[8] Hongxia Xu,Chunwang Li. Review of Knowledge Extraction of Scientific Literature[J]. 数据分析与知识发现, 2019, 3(3): 14-24.
[9] Shengchun Ding,Linlin Hou,Ying Wang. Product Knowledge Map Construction Based on the E-commerce Data[J]. 数据分析与知识发现, 2019, 3(3): 45-56.
[10] Juhua Wu,Yu Wang,Ming Li,Shaoyun Cai. Knowledge Discovery of Online Health Communities with Weighted Knowledge Network[J]. 数据分析与知识发现, 2019, 3(2): 108-117.
[11] Ying Wang,Li Qian,Jing Xie,Zhijun Chang,Beibei Kong. Building Knowledge Graph with Sci-Tech Big Data[J]. 数据分析与知识发现, 2019, 3(1): 15-26.
[12] Li Yu,Li Qian,Changlei Fu,Huaming Zhao. Extracting Fine-grained Knowledge Units from Texts with Deep Learning[J]. 数据分析与知识发现, 2019, 3(1): 38-45.
[13] Li Qian,Jing Xie,Zhijun Chang,Zhenxin Wu,Dongrong Zhang. Designing Smart Knowledge Services with Sci-Tech Big Data[J]. 数据分析与知识发现, 2019, 3(1): 4-14.
[14] Jiying Hu,Jing Xie,Li Qian,Changlei Fu. Constructing Big Data Platform for Sci-Tech Knowledge Discovery with Knowledge Graph[J]. 数据分析与知识发现, 2019, 3(1): 55-62.
[15] Jing Li,Xiao Liu,Xiaoli Wang. Financial Decision Knowledge Acquisition Based on Neighborhood Rough Set and Ensemble Classifiers with Grid Search[J]. 数据分析与知识发现, 2019, 3(1): 85-94.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938