Please wait a minute...
New Technology of Library and Information Service  2006, Vol. 1 Issue (5): 18-21    DOI: 10.11925/infotech.1003-3513.2006.05.05
Current Issue | Archive | Adv Search |
OWL Knowledge Representing Based on China Discipline System
Yu Juan   Wang Jianzhen   Ma Jinping   Li Yong
(Department of Management Science and Engineering, Qingdao University, Qingdao 266071,China)
Download: PDF (0 KB)  
Export: BibTeX | EndNote (RIS)      

A teaching and researching aid system platform based on semantic Web is developed. It is based on current China discipline system and uses Web Ontology Language OWL as the representing language. This method makes distinctions among different types of knowledge representation. An example is given to explain the implement of this representation method.

Key wordsSemantic Web      OWL      Knowledge representation      Discipline system      Teaching and researching aid system     
Received: 22 February 2006      Published: 25 May 2006


Corresponding Authors: Yu Juan     E-mail:
About author:: Yu Juan,Wang Jianzhen,Ma Jinping,Li Yong

Cite this article:

Yu Juan,Wang Jianzhen,Ma Jinping,Li Yong . OWL Knowledge Representing Based on China Discipline System. New Technology of Library and Information Service, 2006, 1(5): 18-21.

URL:     OR

1W3C. Semantic Web Activity Statement. Dec.2, 2004)
2Graham Klyne, Jeremy J. Carroll. Resource Description Framework (RDF): Concepts and Abstract Syntax. Jul.14, 2004)
3Brickley D, Guha R. Resource Description Framework (RDF) Schema Specification. Jul.14, 2004)
4Tim Berners-Lee et al. Some Notes on the differences Between DAML+OIL and OIL. Sep.26, 2004)
5Uche Ogbuji, Roxane Ouellet. DAML Reference. Sep.26, 2004)
6Connolly D et al. DAML+OIL (March 2001) Reference Description. http://www.w3. org/TR/2001/NOTE+DAML+OIL-reference-20011218(Accessed Sep.26, 2004)
7Michael K. Smith, Chris Welty et al. OWL Web Ontology Language Guide. Jan.1, 2005)
8教育部. 普通高等学校本科专业目录. 北京:中国国家教育部, 1998
9Alan Rector. Representing Specified Values in OWL: "value partitions" and "value sets". May.21, 2005)
10Deborah L. McGuinness et al. OWL Web Ontology Language Overview. Jan.1, 2005)
11Thompson H S et al. XML Schema Part 1: Structures. Jun.18, 2005)
12Matthew Horridge, Holger Knublauch et al. A practical guide to building OWL ontology using the protégé-OWL Plugin and CO-ODE tools. The University of Manchester, 2004
13Sean Bechhofer; Raphael Volz; Phillip Lord. Cooking the Semantic Web with the OWL API. Springer-Verlag GmbH, 2003, 2870(10): 659-675
14Mike Dean, Guus Schreiber et al. OWL Web Ontology Language Reference. Jan.1, 2005)
15Su. H, Kramer D et al. XEM: Managing the evolution of XML documents. 11th International Workshop on Research Issues on Data Engineering. US: IEEE, 2001:103-110
16Frank Manola, Eric Miller. RDF Primer. (Accessed Sep.26, 2004)

[1] Wei Wu, Xie Xingzheng. The Determinants of Continuance Intention to Pay: Empirical Research from Online Knowledge Payment Users[J]. 数据分析与知识发现, 2020, 4(8): 119-129.
[2] Yu Chuanming, Wang Manyi, Lin Hongjun, Zhu Xingyu, Huang Tingting, An Lu. A Comparative Study of Word Representation Models Based on Deep Learning[J]. 数据分析与知识发现, 2020, 4(8): 28-40.
[3] Liang Ye,Li Xiaoyuan,Xu Hang,Hu Yiran. CLOpin: A Cross-Lingual Knowledge Graph Framework for Public Opinion Analysis and Early Warning[J]. 数据分析与知识发现, 2020, 4(6): 1-14.
[4] Wei Tingxin,Bai Wenlei,Qu Weiguang. Sense Prediction for Chinese OOV Based on Word Embedding and Semantic Knowledge[J]. 数据分析与知识发现, 2020, 4(6): 109-117.
[5] Su Qing,Chen Sizhao,Wu Weimin,Li Xiaomei,Huang Tiankuan. Personalized Recommendation Model Based on Collaborative Filtering Algorithm of Learning Situation[J]. 数据分析与知识发现, 2020, 4(5): 105-117.
[6] Lv Huakui,Hong Liang,Ma Feicheng. Constructing Knowledge Graph for Financial Equities[J]. 数据分析与知识发现, 2020, 4(5): 27-37.
[7] Yu Chuanming,Yuan Sai,Zhu Xingyu,Lin Hongjun,Zhang Puliang,An Lu. Research on Deep Learning Based Topic Representation of Hot Events[J]. 数据分析与知识发现, 2020, 4(4): 1-14.
[8] Wei Wei,Guo Chonghui,Xing Xiaoyu. Annotating Knowledge Points & Recommending Questions Based on Semantic Association Rules[J]. 数据分析与知识发现, 2020, 4(2/3): 182-191.
[9] Haixia Sun,Panpan Deng,Jiao Li,Liu Shen,Qing Qian. Automatic Concept Update Strategy Towards Heterogeneous Terminology Integration[J]. 数据分析与知识发现, 2020, 4(1): 121-130.
[10] Chuanming Yu,Haonan Li,Manyi Wang,Tingting Huang,Lu An. Knowledge Representation Based on Deep Learning:Network Perspective[J]. 数据分析与知识发现, 2020, 4(1): 63-75.
[11] Jiahui Hu,An Fang,Wanqing Zhao,Chenliu Yang,Huiling Ren. Annotating Chinese E-Medical Record for Knowledge Discovery[J]. 数据分析与知识发现, 2019, 3(7): 123-132.
[12] Haici Yang,Jun Wang. Visualizing Knowledge Graph of Academic Inheritance in Song Dynasty[J]. 数据分析与知识发现, 2019, 3(6): 109-116.
[13] Zhu Fu,Yuefen Wang,Xuhui Ding. Semantic Representation of Design Process Knowledge Reuse[J]. 数据分析与知识发现, 2019, 3(6): 21-29.
[14] Ruihua Qi,Junyi Zhou,Xu Guo,Caihong Liu. Extracting Book Review Topics with Knowledge Base[J]. 数据分析与知识发现, 2019, 3(6): 83-91.
[15] Yujie Cao,Jin Mao,Rongqing Pan,Zhichao Ba,Gang Li. Analyzing Characteristics of Interdisciplinary Research Evolutions: Case Study of Medical Informatics[J]. 数据分析与知识发现, 2019, 3(5): 107-116.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938