Please wait a minute...
New Technology of Library and Information Service  2006, Vol. 1 Issue (5): 36-39    DOI: 10.11925/infotech.1003-3513.2006.05.09
Current Issue | Archive | Adv Search |
Remote Sensing Image Retrieval Based on Bayes Classification
Zhao Ying    Liu Jiajia
(Department of Information Management and Technology, School of Public Administration, Sichuan University, Chengdu 610064, China)
Download: PDF(0 KB)   HTML  
Export: BibTeX | EndNote (RIS)      

This paper demonstrate the method of how to map the primitive image features to the semantic interpretations of the image content, and how to implement interactive learning together with probabilistic search. Lastly, this paper introduces the concept of Ontology for the image retrieval.

Key wordsImage retrieval      Bayes classification      Bayesian Network      Ontology     
Received: 23 February 2006      Published: 25 May 2006


Corresponding Authors: Liu Jiajia     E-mail:
About author:: Zhao Ying,Liu Jiajia

Cite this article:

Zhao Ying,Liu Jiajia . Remote Sensing Image Retrieval Based on Bayes Classification. New Technology of Library and Information Service, 2006, 1(5): 36-39.

URL:     OR

2Mihai Datcu, Herbert Daschiel, Andrea Pelizzari, Marco Quartulli, Annalisa Galoppo, Andrea Colapicchioni, Marco Pastori, Klaus Seidel, Pier Giorgio Marchetti, and Sergio D'Elia. Information Mining in Remote Sensing Image Archives—Part A: System Concepts. IEEE Transactions on Geoscience and Remote Sensing,  December  2003
3Peter Stanchev.Using Image Mining for Image Retrieval. IASTED conf. Computer Science and Technology,May 19-21,2003 Cancum,Mexico,214-218
4Michael Schrder, Hubert Rehrauer, Klaus Seidel, and Mihai Datcu. Interactive Learning and Probabilistic Retrieval in Remote Sensing Image Archives. IEEE Transactions on Geoscience and Remote Sensing,2000,38(5):2288-2298

[1] Zhu Fu,Yuefen Wang,Xuhui Ding. Semantic Representation of Design Process Knowledge Reuse[J]. 数据分析与知识发现, 2019, 3(6): 21-29.
[2] Guangshang Gao. A Survey of User Profiles Methods[J]. 数据分析与知识发现, 2019, 3(3): 25-35.
[3] Ying Wang,Li Qian,Jing Xie,Zhijun Chang,Beibei Kong. Building Knowledge Graph with Sci-Tech Big Data[J]. 数据分析与知识发现, 2019, 3(1): 15-26.
[4] Youshi He,Shufang He. Sentiment Mining of Online Product Reviews Based on Domain Ontology[J]. 数据分析与知识发现, 2018, 2(8): 60-68.
[5] Huihui Tang,Hao Wang,Zixuan Zhang,Xueying Wang. Extracting Names of Historical Events Based on Chinese Character Tags[J]. 数据分析与知识发现, 2018, 2(7): 89-100.
[6] Beibei Pang,Juanqiong Gou,Wenxin Mu. Extracting Topics and Their Relationship from College Student Mentoring[J]. 数据分析与知识发现, 2018, 2(6): 92-101.
[7] Shengchun Ding,Menglu Liu,Zhu Fu. Unified Multidimensional Model Based on Knowledge Flow in Conceptual Design[J]. 数据分析与知识发现, 2018, 2(2): 11-19.
[8] Haili Tu,Xiaobo Tang. Building Product Recommendation Model Based on Tags[J]. 数据分析与知识发现, 2017, 1(9): 28-39.
[9] Erjing Chen,Enbo Jiang. Review of Studies on Text Similarity Measures[J]. 数据分析与知识发现, 2017, 1(6): 1-11.
[10] Rujiang Bai,Fuhai Leng,Junhua Liao. An Improved Cosine Text Similarity Computing Method Based on Semantic Chunk Feature[J]. 数据分析与知识发现, 2017, 1(6): 56-64.
[11] Dan Wu,Chang Liu,Yi Li. Changing Sentiments of Pedestrian Navigation System Users[J]. 数据分析与知识发现, 2017, 1(5): 42-51.
[12] Bincan Yin,Shichao Xin,Han Zhang,Yuhong Zhao. Building Asian Tumor-patients Prognostic Model with Bayesian Network and SEER Database——Case Study of Non-Small Cell Lung Cancer[J]. 数据分析与知识发现, 2017, 1(2): 41-46.
[13] Liu Jian,Bi Qiang,Liu Qingxu,Wang Fu. New Content Recommendation Service of Digital Literature[J]. 现代图书情报技术, 2016, 32(9): 70-77.
[14] Ding Heng,Lu Wei. Building Standard Literature Knowledge Service System[J]. 现代图书情报技术, 2016, 32(7-8): 120-128.
[15] Lu Jiaying,Yuan Qinjian,Huang Qi,Qian Yunjie. Building Product Domain Ontology with Concept Lattice Theory[J]. 现代图书情报技术, 2016, 32(5): 38-46.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938