Please wait a minute...
New Technology of Library and Information Service  2006, Vol. 1 Issue (5): 44-46    DOI: 10.11925/infotech.1003-3513.2006.05.11
Current Issue | Archive | Adv Search |
A New Clustering Algorithm Based on GA and K-medoids Algorithm
Hao Zhangang   Wang Zhengou
(Institute of Systems Engineering, Tianjin University, Tianjin 300072,China)
Download: PDF (0 KB)  
Export: BibTeX | EndNote (RIS)      

This paper presents a new clustering algorithm based on GA(Genetic Algorithm) and k-medoids algorithm. The new algorithm can not only improve the precision of clustering but also recognize isolated points. At the same time,the new algorithm may expedite the convergence of GA and save the time cost for integration with the kmedoids algorithm in GA.

Key wordsClustering      Genetic Algorithm      K-medoids Algorithm     
Received: 24 January 2006      Published: 25 May 2006


Corresponding Authors: Hao Zhangang     E-mail:
About author:: Hao Zhangang,Wang Zhengou

Cite this article:

Hao Zhangang,Wang Zhengou . A New Clustering Algorithm Based on GA and K-medoids Algorithm. New Technology of Library and Information Service, 2006, 1(5): 44-46.

URL:     OR

1朱明. 数据挖掘合肥:中国科技技术大学出版社,2002129-157
2D.B.Fogel. An introduction to simulated evolutionary optimization. IEEE Trans.(Neural Network). 1994,5(1):3-14
3J.N.Bhuyan, V.V.Raghavan, V.K.Elayavalli. Genetic algorithm for clustering with an ordered representation,in Proc. 4th Int. Conf. Genetic Algorithms. San Mateo: Morgan Kaufman, 1991.408-420
4D.R.Jones, M. A. Beltramo.Solving partitioning problems with genetic algorithms, in Proc. 4th Int. Conf. Genetic Algorithms. San Mateo: Morgan Kaufman, 1991.442-457
6K.Krishna, M.Narasimha Murty. Genetic K-Means Algorithm.IEEE Transactions on systems, man, and cybernetics-partB:Cybernetics,1999,29(3):433-439

[1] Xi Yunjiang, Du Diedie, Liao Xiao, Zhang Xuehong. Analyzing & Clustering Enterprise Microblog Users with Supernetwork[J]. 数据分析与知识发现, 2020, 4(8): 107-118.
[2] Yang Xu,Qian Xiaodong. Synchronous Clustering Algorithm for Social Networks Based on Improved Vicsek Model[J]. 数据分析与知识发现, 2020, 4(4): 119-128.
[3] Xiong Huixiang,Li Xiaomin,Li Yueyan. Group Recommendation Based on Attribute Mining of Book Reviews[J]. 数据分析与知识发现, 2020, 4(2/3): 214-222.
[4] Huaming Zhao,Li Yu,Qiang Zhou. Determining Best Text Clustering Number with Mean Shift Algorithm[J]. 数据分析与知识发现, 2019, 3(9): 27-35.
[5] Shan Li,Yehui Yao,Hao Li,Jie Liu,Karmapemo. ISA Biclustering Algorithm for Group Recommendation[J]. 数据分析与知识发现, 2019, 3(8): 77-87.
[6] Ke Li,Yuya Sasaki. Analyzing Sentiment Distribution with Spatial-textual Data of Multi-dimensional Clustering[J]. 数据分析与知识发现, 2019, 3(7): 14-22.
[7] Cheng Zhou,Hongqin Wei. Evaluating and Classifying Patent Values Based on Self-Organizing Maps and Support Vector Machine[J]. 数据分析与知识发现, 2019, 3(5): 117-124.
[8] Quan Lu,Anqi Zhu,Jiyue Zhang,Jing Chen. Research on User Information Requirement in Chinese Network Health Community: Taking Tumor-forum Data of Qiuyi as an Example[J]. 数据分析与知识发现, 2019, 3(4): 22-32.
[9] Jiang Wu,Yinghui Zhao,Jiahui Gao. Research on Weibo Opinion Leaders Identification and Analysis in Medical Public Opinion Incidents[J]. 数据分析与知识发现, 2019, 3(4): 53-62.
[10] Lianjie Xiao,Mengrui Gao,Xinning Su. An Under-sampling Ensemble Classification Algorithm Based on Fuzzy C-Means Clustering for Imbalanced Data[J]. 数据分析与知识发现, 2019, 3(4): 90-96.
[11] Jiaxin Ye,Huixiang Xiong. Recommending Personalized Contents from Cross-Domain Resources Based on Tags[J]. 数据分析与知识发现, 2019, 3(2): 21-32.
[12] Chongwu Bi,Guanghui Ye,Mingqian Li,Jieyan Zeng. Discovering City Profile Based on Tag Semantic Mining[J]. 数据分析与知识发现, 2019, 3(12): 41-51.
[13] Junzhi Jia,Zhuangzhuang Ye. Clustering Wikidata’s Organizational Entities with Latent Semantic Index[J]. 数据分析与知识发现, 2019, 3(10): 56-65.
[14] Huiying Gao,Tian Wei,Jiawei Liu. Friend Recommendation Based on User Clustering and Dynamic Interaction Trust Relationship[J]. 数据分析与知识发现, 2019, 3(10): 66-77.
[15] Zhang Tao,Ma Haiqun. Clustering Policy Texts Based on LDA Topic Model[J]. 数据分析与知识发现, 2018, 2(9): 59-65.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938