Please wait a minute...
New Technology of Library and Information Service  2006, Vol. 1 Issue (5): 50-53    DOI: 10.11925/infotech.1003-3513.2006.05.13
Current Issue | Archive | Adv Search |
Study of Education Resource System Integration Based on Services Grid
Yang Wei1    Wang Yun2    Yuan Rong1
1(Network Information Center, Shanxi Normal University, Linfen 041004,China)
2(School of Educational Technology, Shanxi Normal University, Linfen 041004, China)
Download: PDF (0 KB)  
Export: BibTeX | EndNote (RIS)      

In the light of the problems in the present teaching resource system, such as the single information and coincident integration and so on, the functional structure between share and cooperation is described, which are supported by the teaching resource system under the developing teaching surroundings. The technology of software integration based on the Web service is stated. An integrated frame of teaching resource system based on the services grid is presented.

Key wordsNetwork teaching      NET      Web Service      XML      Service grid      System integration     
Received: 27 February 2006      Published: 25 May 2006


Corresponding Authors: Yang Wei     E-mail:
About author:: Yang Wei,Wang Yun,Yuan Rong

Cite this article:

Yang Wei,Wang Yun,Yuan Rong . Study of Education Resource System Integration Based on Services Grid. New Technology of Library and Information Service, 2006, 1(5): 50-53.

URL:     OR

1Yang-GuangWen,Shi-ShuMing,Wang-DingXing et al. DSI: Distributed Service Integration for Service Grid.Journal of  Computer Science & Technol. 2003,18(4):474-483
3虎嵩林,韩燕波.服务网格下的软件集成. 788186591.html (Accessed May  1,2005)
4华宇.网格与Web服务的整合. (Accessed May 1,2005)
6YangWei, YuanRong. The Research and Design of Intelligent E-learning System.Computer Science and technology in New Century. International Academic Publishers World Publishing Corporation Oct.2001:1245-1247

[1] Xi Yunjiang, Du Diedie, Liao Xiao, Zhang Xuehong. Analyzing & Clustering Enterprise Microblog Users with Supernetwork[J]. 数据分析与知识发现, 2020, 4(8): 107-118.
[2] Sheng Jiaqi, Xu Xin. Expanding Scholar Labels with Research Similarity and Co-authorship Network[J]. 数据分析与知识发现, 2020, 4(8): 75-85.
[3] Qiu Erli,He Hongwei,Yi Chengqi,Li Huiying. Research on Public Policy Support Based on Character-level CNN Technology[J]. 数据分析与知识发现, 2020, 4(7): 28-37.
[4] Cai Yongming,Liu Lu,Wang Kewei. Identifying Key Users and Topics from Online Learning Community[J]. 数据分析与知识发现, 2020, 4(6): 69-79.
[5] Liu Weijiang,Wei Hai,Yun Tianhe. Evaluation Model for Customer Credits Based on Convolutional Neural Network[J]. 数据分析与知识发现, 2020, 4(6): 80-90.
[6] Wang Mo,Cui Yunpeng,Chen Li,Li Huan. A Deep Learning-based Method of Argumentative Zoning for Research Articles[J]. 数据分析与知识发现, 2020, 4(6): 60-68.
[7] Li Wenzheng,Gu Yijun,Yan Hongli. Predicting Community Numbers with Network Bayesian Information Criterion[J]. 数据分析与知识发现, 2020, 4(4): 72-82.
[8] Yan Chun,Liu Lu. Classifying Non-life Insurance Customers Based on Improved SOM and RFM Models[J]. 数据分析与知识发现, 2020, 4(4): 83-90.
[9] Su Chuandong,Huang Xiaoxi,Wang Rongbo,Chen Zhiqun,Mao Junyu,Zhu Jiaying,Pan Yuhao. Identifying Chinese / English Metaphors with Word Embedding and Recurrent Neural Network[J]. 数据分析与知识发现, 2020, 4(4): 91-99.
[10] Liu Yuwen,Wang Kai. Finding Geographic Locations of Popular Online Topics[J]. 数据分析与知识发现, 2020, 4(2/3): 173-181.
[11] Xu Yuemei,Liu Yunwen,Cai Lianqiao. Predicitng Retweets of Government Microblogs with Deep-combined Features[J]. 数据分析与知识发现, 2020, 4(2/3): 18-28.
[12] Xu Jianmin,Zhang Liqing,Wang Miao. Tracking Static Topics with Bayesian Network[J]. 数据分析与知识发现, 2020, 4(2/3): 200-206.
[13] Ding Shengchun,Yu Fengyang,Li Zhen. Identifying Potential Trending Topics of Online Public Opinion[J]. 数据分析与知识发现, 2020, 4(2/3): 29-38.
[14] Xiang Fei,Xie Yaotan. Recognition Model of Patient Reviews Based on Mixed Sampling and Transfer Learning[J]. 数据分析与知识发现, 2020, 4(2/3): 39-47.
[15] Yu Chuanming,Zhong Yunci,Lin Aochen,An Lu. Author Name Disambiguation with Network Embedding[J]. 数据分析与知识发现, 2020, 4(2/3): 48-59.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938