Please wait a minute...
New Technology of Library and Information Service  2006, Vol. 1 Issue (12): 34-36    DOI: 10.11925/infotech.1003-3513.2006.12.09
Current Issue | Archive | Adv Search |
A Hybrid Case-Based Reasoning and Ontology Approach to Intelligent Information Retrieval
Li Peng Qiao Xiaodong Zhang Yongjun2    Zhao Xinli1,3 
1(Institute of Scientifie & Technical Information of China, Beijing 100038,China)
2(China National Petroleum Corporation, Beijing 100724,China)
3(China Science and Technology Exchange Center, Beijing 100045, China)
Download: PDF (0 KB)  
Export: BibTeX | EndNote (RIS)      

This paper presentes a new information retrieval framework, which combined Case-Based Reasoning (CBR) and Ontology through the way of using the Ontology to annotate Web pages and design case, also using the CBR to reason about Web page content. The paper gives a system application to tourism as example.

Key wordsOntology      CBR      Intelligent information retrieval     
Received: 11 October 2006      Published: 25 December 2006


Corresponding Authors: Zhao Xinli     E-mail:
About author:: Li Peng,Qiao Xiaodong,Zhang Yongjun,Zhao Xinli

Cite this article:

Li Peng,Qiao Xiaodong,Zhang Yongjun,Zhao Xinli . A Hybrid Case-Based Reasoning and Ontology Approach to Intelligent Information Retrieval. New Technology of Library and Information Service, 2006, 1(12): 34-36.

URL:     OR

1黄玉基, 魏伟杰, 曾文. 基于事例推理系统中检索策略的分析与研究——东北大学学报(自然科学版),2006(1):33-36
2Jody J. Daniels, Edwina L. Rissland. A Case-Based Approach to Intelligent Information Retrieval,Proceedings of the SIGIR'95 Conference SIGIR'95 Seattle WA USA 1995 ACM 1995
3Dave RaggettHTML4.01 specification W3C Recommendation, 1999 Sept.20,2003)
4余大纲, 邱昭彰, 钟云恭. 案例库推理法于蝴蝶花(Iris)问题之应用台湾:2000 年科技与管理学术研讨会,2000115-126
5寇莎莎, 魏振军. K-最近邻的改进及其在文本分类中的应用河南师范大学学报(自然科学版), 2005(3):134-136
6敖成龙,苏英,龚元明. 基于相似度的复杂数据对象比较北京理工大学学报,2003(10):593-595

[1] Shaohua Qiang,Yunlu Luo,Yupeng Li,Peng Wu. Ontology Reasoning for Financial Affairs with RBR and CBR[J]. 数据分析与知识发现, 2019, 3(8): 94-104.
[2] Shiqi Deng,Liang Hong. Constructing Domain Ontology for Intelligent Applications: Case Study of Anti Tele-Fraud[J]. 数据分析与知识发现, 2019, 3(7): 73-84.
[3] Zhu Fu,Yuefen Wang,Xuhui Ding. Semantic Representation of Design Process Knowledge Reuse[J]. 数据分析与知识发现, 2019, 3(6): 21-29.
[4] Guangshang Gao. A Survey of User Profiles Methods[J]. 数据分析与知识发现, 2019, 3(3): 25-35.
[5] Ying Wang,Li Qian,Jing Xie,Zhijun Chang,Beibei Kong. Building Knowledge Graph with Sci-Tech Big Data[J]. 数据分析与知识发现, 2019, 3(1): 15-26.
[6] He Youshi,He Shufang. Sentiment Mining of Online Product Reviews Based on Domain Ontology[J]. 数据分析与知识发现, 2018, 2(8): 60-68.
[7] Tang Huihui,Wang Hao,Zhang Zixuan,Wang Xueying. Extracting Names of Historical Events Based on Chinese Character Tags[J]. 数据分析与知识发现, 2018, 2(7): 89-100.
[8] Pang Beibei,Gou Juanqiong,Mu Wenxin. Extracting Topics and Their Relationship from College Student Mentoring[J]. 数据分析与知识发现, 2018, 2(6): 92-101.
[9] Ding Shengchun,Liu Menglu,Fu Zhu. Unified Multidimensional Model Based on Knowledge Flow in Conceptual Design[J]. 数据分析与知识发现, 2018, 2(2): 11-19.
[10] Tu Haili,Tang Xiaobo. Building Product Recommendation Model Based on Tags[J]. 数据分析与知识发现, 2017, 1(9): 28-39.
[11] Chen Erjing,Jiang Enbo. Review of Studies on Text Similarity Measures[J]. 数据分析与知识发现, 2017, 1(6): 1-11.
[12] Bai Rujiang,Leng Fuhai,Liao Junhua. An Improved Cosine Text Similarity Computing Method Based on Semantic Chunk Feature[J]. 数据分析与知识发现, 2017, 1(6): 56-64.
[13] Wu Dan,Liu Chang,Li Yi. Changing Sentiments of Pedestrian Navigation System Users[J]. 数据分析与知识发现, 2017, 1(5): 42-51.
[14] Liu Jian,Bi Qiang,Liu Qingxu,Wang Fu. New Content Recommendation Service of Digital Literature[J]. 现代图书情报技术, 2016, 32(9): 70-77.
[15] Ding Heng,Lu Wei. Building Standard Literature Knowledge Service System[J]. 现代图书情报技术, 2016, 32(7-8): 120-128.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938