Please wait a minute...
New Technology of Library and Information Service  2007, Vol. 2 Issue (2): 44-48    DOI: 10.11925/infotech.1003-3513.2007.02.09
Current Issue | Archive | Adv Search |
Recognition Mutually Exclusive Words for Information Retrieval
Zhang Chengzhi   Su Xinning
(Department of Information Management, Nanjing University,Nanjing 210093,China)
Download: PDF(483 KB)   HTML  
Export: BibTeX | EndNote (RIS)      
Abstract  

This paper introduces the phenomenon of mutually exclusive words and poses the role of mutually exclusive words identification in information retrieval system. The authors indicate that mutually exclusive words can be identified from the pseudo-ambiguity results after segmentation of maximal quasi overlapping ambiguity string, then present the method and result of the mutually exclusive words identification. Also the application of mutually exclusive words is provided.

Key wordsInformation retrieval      Chinese information processing      Overlapping ambiguity      Mutually exclusive words recognition      Pseudo-ambiguity     
Received: 20 November 2006      Published: 25 February 2007
: 

TP391 

 
  G252

 
Corresponding Authors: Zhang Chengzhi     E-mail: zcz51@citiz.net
About author:: Zhang Chengzhi,Su Xinning

Cite this article:

Zhang Chengzhi,Su Xinning . Recognition Mutually Exclusive Words for Information Retrieval. New Technology of Library and Information Service, 2007, 2(2): 44-48.

URL:

http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/10.11925/infotech.1003-3513.2007.02.09     OR     http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/Y2007/V2/I2/44

1孙茂松,左正平,邹嘉彦.高频最大交集型歧义切分字段在汉语分词中的作用.中文信息学报,1999,13(1):27-34
2李斌,陈小荷,方芳等.基于语料库的高频最大交集型歧义字段考察.中文信息学报,2006,20(1):1-6
3刘挺.歧义字段的最大概率切分算法.语言工程.北京:清华大学出版社,1997182-187
4陈小荷.用基于词的二元模型消解交集型分词歧义.南京师范大学学报(社会科学版),2004(6):109-113
5Mu Li, Jianfeng Gao, Changning Huang et al. Unsupervised Training for Overlapping Ambiguity Resolution in Chinese Word Segmentation. In: Proceedings of the Second SIGHAN Workshop on Chinese Language Processing. Sapporo, Japan, 20031-7
6赵铁军,吕雅娟,于浩等.提高汉语自动分词精度的多步处理策略.中文信息学报,2001,15(1):13-18
7孙茂松,邹嘉彦.汉语自动分词研究评述.当代语言学,2001,3(1):22-32
8Lexicon_tull_2000.mdb.http://ccl.pku.edu.cn/doubtfire/Course/Chinese%20Information%20Processing/Source_Code/Chapter_8/Lexicon_full_2000.zip(Accessed Apr.20,2006)

[1] Haixia Sun,Lei Wang,Yingjie Wu,Weina Hua,Junlian Li. Matching Strategies for Institution Names in Literature Database[J]. 数据分析与知识发现, 2018, 2(8): 88-97.
[2] Chaofan Yang,Zhonghua Deng,Xin Peng,Bin Liu. Review of Information Retrieval Research: Case Study of Conference Papers[J]. 数据分析与知识发现, 2017, 1(7): 35-43.
[3] Xiaojuan Zhang, Yi Han. Reviews on Temporal Information Retrieval[J]. 数据分析与知识发现, 2017, 1(1): 3-15.
[4] Mingxuan Huang. Cross Language Information Retrieval Model Based on Matrix-weighted Association Patterns Mining[J]. 数据分析与知识发现, 2017, 1(1): 26-36.
[5] Ding Heng,Lu Wei. Building Standard Literature Knowledge Service System[J]. 现代图书情报技术, 2016, 32(7-8): 120-128.
[6] Heng Ding, Wei Lu. A Study on Correlation-based Cross-Modal Information Retrieval[J]. 现代图书情报技术, 2016, 32(1): 17-23.
[7] Yufeng Duan,Sisi Huang. Information Extraction from Chinese Plant Species Diversity Description Text[J]. 现代图书情报技术, 2016, 32(1): 87-96.
[8] Mao Jin, Li Gang, Cao Yujie. Re-rank Retrieval Results Through Subject Indexing[J]. 现代图书情报技术, 2014, 30(7): 48-55.
[9] Qiu Junping, Fang Guoping. The Comparative Analysis of Natural Language Processing Research at Home and Abroad Based on Knowledge Mapping[J]. 现代图书情报技术, 2014, 30(12): 51-61.
[10] Tang Jingxiao,Lv Xueqiang,Liu Chengyang,Li Han. A Hierarchical Framework for User Intention Recognition[J]. 现代图书情报技术, 2014, 30(1): 36-42.
[11] Zhang Mei, Duan Jianyong, Xu Jichao. Person Name Attribute Knowledge Mining and Its Application for Query Classification[J]. 现代图书情报技术, 2013, 29(9): 82-87.
[12] Zhou Shanshan, Bi Qiang, Gao Junfeng. A Method of Information Retrieval Results Visualization Based on Social Network Analysis[J]. 现代图书情报技术, 2013, 29(11): 81-85.
[13] Ma Junhong. A Staged and Integrated Semantic Similarity Algorithm of Text[J]. 现代图书情报技术, 2013, 29(10): 20-26.
[14] Deng Shasha, Zhang Pengzhu, Li Xinmiao. A Method for Network Opinion Modeling Based on Governmental Public Decision Domain[J]. 现代图书情报技术, 2012, (9): 69-74.
[15] Jiang Hua, Su Xiaoguang. Chinese High-frequency Words Extraction Algorithm Without Thesaurus[J]. 现代图书情报技术, 2012, 28(6): 50-53.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938   E-mail:jishu@mail.las.ac.cn