Please wait a minute...
New Technology of Library and Information Service  2007, Vol. 2 Issue (2): 86-89    DOI: 10.11925/infotech.1003-3513.2007.02.19
Current Issue | Archive | Adv Search |
Construction of Medical Image Digital Library Based on Ontology
Chen Jiacui1  Ruan XuepingJin Qian3  Ping Haifeng4  Shen Dongjing5
1(Soochow University Library,Suzhou 215006, China)
2(Institute of Medical Information Library, Beijing 100005, China)
3(National Science and Technology Library, Beijing 100038, China)
4(Beijing Institute of Aeronautical Materials Technical Library, Beijing 100095, China)
5(Shanghai Information Center for Life Science, CAS, Shanghai 200031, China)
Download: PDF(592 KB)   HTML  
Export: BibTeX | EndNote (RIS)      

The medical Ontology consists of three components: medical image, case, and medical literature. The case-centered Ontology connects medical imaging resources, medical literature, patient information, medical staff and Rx. The paper analyses the detailed attributes of various medical digital objects, and applies the attributes to medical Ontology and metadata setting. The paper also discusses the preservation planning of medical image.

Key wordsMedicine digital library      Medical image      Resource preservation      Ontology     
Received: 18 August 2006      Published: 25 February 2007


Corresponding Authors: Chen Jiacui     E-mail:
About author:: Chen Jiacui,Ruan Xueping,Jin Qian,Ping Haifeng,Shen Dongjing

Cite this article:

Chen Jiacui,Ruan Xueping,Jin Qian,Ping Haifeng,Shen Dongjing . Construction of Medical Image Digital Library Based on Ontology. New Technology of Library and Information Service, 2007, 2(2): 86-89.

URL:     OR

1宋岳涛, 尹岭. 神经影像数据库的构建与资源共享. 中国医疗器械杂志, 2006, 30(4): 247-249, 290
2What is Service-Oriented Architecture. (Accessed Jul.31,2006)
3Single View of the Customer. (Accessed Jul.31,2006)
42006教育行业信息存储大会. (Accessed Jul.27,2006)
5National Library of Medicine. NLM Metadata Schema. (Accessed Jul.27,2006)
6Carl Lagoze, Herbert Van de Sompel. Open Archives Initiative Protocol for Metadata Harvesting, Version 2.0. Jul.27,2006)

[1] Zhu Fu,Yuefen Wang,Xuhui Ding. Semantic Representation of Design Process Knowledge Reuse[J]. 数据分析与知识发现, 2019, 3(6): 21-29.
[2] Guangshang Gao. A Survey of User Profiles Methods[J]. 数据分析与知识发现, 2019, 3(3): 25-35.
[3] Ying Wang,Li Qian,Jing Xie,Zhijun Chang,Beibei Kong. Building Knowledge Graph with Sci-Tech Big Data[J]. 数据分析与知识发现, 2019, 3(1): 15-26.
[4] Youshi He,Shufang He. Sentiment Mining of Online Product Reviews Based on Domain Ontology[J]. 数据分析与知识发现, 2018, 2(8): 60-68.
[5] Huihui Tang,Hao Wang,Zixuan Zhang,Xueying Wang. Extracting Names of Historical Events Based on Chinese Character Tags[J]. 数据分析与知识发现, 2018, 2(7): 89-100.
[6] Beibei Pang,Juanqiong Gou,Wenxin Mu. Extracting Topics and Their Relationship from College Student Mentoring[J]. 数据分析与知识发现, 2018, 2(6): 92-101.
[7] Shengchun Ding,Menglu Liu,Zhu Fu. Unified Multidimensional Model Based on Knowledge Flow in Conceptual Design[J]. 数据分析与知识发现, 2018, 2(2): 11-19.
[8] Haili Tu,Xiaobo Tang. Building Product Recommendation Model Based on Tags[J]. 数据分析与知识发现, 2017, 1(9): 28-39.
[9] Erjing Chen,Enbo Jiang. Review of Studies on Text Similarity Measures[J]. 数据分析与知识发现, 2017, 1(6): 1-11.
[10] Rujiang Bai,Fuhai Leng,Junhua Liao. An Improved Cosine Text Similarity Computing Method Based on Semantic Chunk Feature[J]. 数据分析与知识发现, 2017, 1(6): 56-64.
[11] Dan Wu,Chang Liu,Yi Li. Changing Sentiments of Pedestrian Navigation System Users[J]. 数据分析与知识发现, 2017, 1(5): 42-51.
[12] Liu Jian,Bi Qiang,Liu Qingxu,Wang Fu. New Content Recommendation Service of Digital Literature[J]. 现代图书情报技术, 2016, 32(9): 70-77.
[13] Ding Heng,Lu Wei. Building Standard Literature Knowledge Service System[J]. 现代图书情报技术, 2016, 32(7-8): 120-128.
[14] Lu Jiaying,Yuan Qinjian,Huang Qi,Qian Yunjie. Building Product Domain Ontology with Concept Lattice Theory[J]. 现代图书情报技术, 2016, 32(5): 38-46.
[15] Zhang Lei,Ma Jing,Li Dandan,Shen Yang. Hypernetwork Model for Semantic Social Network and Automatic Identification of Key Nodes[J]. 现代图书情报技术, 2016, 32(3): 8-17.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938