Please wait a minute...
New Technology of Library and Information Service  2007, Vol. 2 Issue (4): 35-38    DOI: 10.11925/infotech.1003-3513.2007.04.09
Current Issue | Archive | Adv Search |
Study of Personalized Recommendation System on Internet
Liu Song
(Information Technology School,Guangdong Business College, Guangzhou 510320,China)
Download: PDF (424 KB)  
Export: BibTeX | EndNote (RIS)      

This paper presents a personalized recommendation system by using Ontology and universal user profile. Firstly, the Website directory service is used as Ontology to identify user’s browsing behaviors on Internet to discover user preferences. Secondly, the redundant Web logs are filtered out by using Web usage mining technology , which can enhance the accuracy of personalization. Finally, from user preference directory, user’s potential preference is discovered by using the hierarchical property,that is,to bring out the universal user profile which match the characteristics of the user.

Key wordsPersonalization      Website directory service      Ontology      Web usage mining     
Received: 12 March 2007      Published: 25 April 2007


Corresponding Authors: Liu Song     E-mail:
About author:: Liu Song

Cite this article:

Liu Song . Study of Personalized Recommendation System on Internet. New Technology of Library and Information Service, 2007, 2(4): 35-38.

URL:     OR

1Cingil, Ibrahim, Asuman Dogac, et al. A Broader Approach to Personalization. Communications of the ACM, 2000,43(8):136-141
2Cingil, Ibrahim. Supporting Global User Profiles through Trusted Authorities. ACM SIGMOD Record, 2002(31):11-17
3Gruber T R. A Translation Approach to Portable Ontology Specifications.  Knowledge Acquisition, 1993(5):199-220
4Labrou, Yannis , Tim Finin. Yahoo! as an Ontology- Using Yahoo! Categories to Describe Documents. In:Proceedings of the Eighth International Conference on Information and Knowledge Management. Pittsburgh:[s.n.], 1999:180-187
5贾春华. 数字图书馆的个性化信息服务. 现代图书情报技术,2004 (12) : 88 - 90
6张鼐. 基于本体论的网络信息检索. 情报杂志,2006(4):95-99

[1] Shaohua Qiang,Yunlu Luo,Yupeng Li,Peng Wu. Ontology Reasoning for Financial Affairs with RBR and CBR[J]. 数据分析与知识发现, 2019, 3(8): 94-104.
[2] Shiqi Deng,Liang Hong. Constructing Domain Ontology for Intelligent Applications: Case Study of Anti Tele-Fraud[J]. 数据分析与知识发现, 2019, 3(7): 73-84.
[3] Zhu Fu,Yuefen Wang,Xuhui Ding. Semantic Representation of Design Process Knowledge Reuse[J]. 数据分析与知识发现, 2019, 3(6): 21-29.
[4] Guangshang Gao. A Survey of User Profiles Methods[J]. 数据分析与知识发现, 2019, 3(3): 25-35.
[5] Ying Wang,Li Qian,Jing Xie,Zhijun Chang,Beibei Kong. Building Knowledge Graph with Sci-Tech Big Data[J]. 数据分析与知识发现, 2019, 3(1): 15-26.
[6] He Youshi,He Shufang. Sentiment Mining of Online Product Reviews Based on Domain Ontology[J]. 数据分析与知识发现, 2018, 2(8): 60-68.
[7] Tang Huihui,Wang Hao,Zhang Zixuan,Wang Xueying. Extracting Names of Historical Events Based on Chinese Character Tags[J]. 数据分析与知识发现, 2018, 2(7): 89-100.
[8] Pang Beibei,Gou Juanqiong,Mu Wenxin. Extracting Topics and Their Relationship from College Student Mentoring[J]. 数据分析与知识发现, 2018, 2(6): 92-101.
[9] Ding Shengchun,Liu Menglu,Fu Zhu. Unified Multidimensional Model Based on Knowledge Flow in Conceptual Design[J]. 数据分析与知识发现, 2018, 2(2): 11-19.
[10] Tu Haili,Tang Xiaobo. Building Product Recommendation Model Based on Tags[J]. 数据分析与知识发现, 2017, 1(9): 28-39.
[11] Chen Erjing,Jiang Enbo. Review of Studies on Text Similarity Measures[J]. 数据分析与知识发现, 2017, 1(6): 1-11.
[12] Bai Rujiang,Leng Fuhai,Liao Junhua. An Improved Cosine Text Similarity Computing Method Based on Semantic Chunk Feature[J]. 数据分析与知识发现, 2017, 1(6): 56-64.
[13] Wu Dan,Liu Chang,Li Yi. Changing Sentiments of Pedestrian Navigation System Users[J]. 数据分析与知识发现, 2017, 1(5): 42-51.
[14] Liu Jian,Bi Qiang,Liu Qingxu,Wang Fu. New Content Recommendation Service of Digital Literature[J]. 现代图书情报技术, 2016, 32(9): 70-77.
[15] Luo Wenxin,Chen Chong,Deng Siyi. Detecting Disease Associations with Word2Vec from Consumer Health Information[J]. 现代图书情报技术, 2016, 32(9): 78-87.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938