Please wait a minute...
New Technology of Library and Information Service  2007, Vol. 2 Issue (5): 36-40    DOI: 10.11925/infotech.1003-3513.2007.05.09
Current Issue | Archive | Adv Search |
A Shudy on Web Services Composition Based on Ontology
Han Yahong   Liu Yongge
 (Computer and Information Engineering College,Anyang Normal University,Anyang 455000, China
Download: PDF (527 KB)  
Export: BibTeX | EndNote (RIS)      

This paper firstly introduces the concept of Web Services and Web Services composition. Based on the introduction of OWLS’s upper Ontology and its description for Web Services composition, the paper indicates that the capability of OWLS’s supporting for Web Service composition is limited, and the semantic expansion for composition based on Ontology is needed. By instance it introduces how to get the semantic expansion for WSDL, and based on the definition of Web Services, it discusses the definition of composability of Web Services, which is the basic for future automatic Web Services composition.

Key wordsSemantic Web      Web Services      Service composition      Ontology     
Received: 10 April 2007      Published: 25 May 2007


Corresponding Authors: Han Yahong     E-mail:
About author:: Han Yahong,Liu Yongge

Cite this article:

Han Yahong,Liu Yongge . A Shudy on Web Services Composition Based on Ontology. New Technology of Library and Information Service, 2007, 2(5): 36-40.

URL:     OR

1W3C, Web Services Architecture Requirements. (Accessed Mar. 25,2007)
2W3C, OWL-S: Semantic Markup for Web Services. (Accessed Mar. 25,2007)
3Sheila A. et al. Semantic Web Services. IEEE Intelligent Systems, 2001,16(2): 46–53
4Berners-Lee T. Semantic Web Road Map. Internal Note,W3C. Mar. 25,2007)
5崔俊涛.一种在Web Services的语义合成中的本体建模方法.计算机研究与发展,2004,41(10):209-231

[1] Shaohua Qiang,Yunlu Luo,Yupeng Li,Peng Wu. Ontology Reasoning for Financial Affairs with RBR and CBR[J]. 数据分析与知识发现, 2019, 3(8): 94-104.
[2] Shiqi Deng,Liang Hong. Constructing Domain Ontology for Intelligent Applications: Case Study of Anti Tele-Fraud[J]. 数据分析与知识发现, 2019, 3(7): 73-84.
[3] Zhu Fu,Yuefen Wang,Xuhui Ding. Semantic Representation of Design Process Knowledge Reuse[J]. 数据分析与知识发现, 2019, 3(6): 21-29.
[4] Guangshang Gao. A Survey of User Profiles Methods[J]. 数据分析与知识发现, 2019, 3(3): 25-35.
[5] Ying Wang,Li Qian,Jing Xie,Zhijun Chang,Beibei Kong. Building Knowledge Graph with Sci-Tech Big Data[J]. 数据分析与知识发现, 2019, 3(1): 15-26.
[6] He Youshi,He Shufang. Sentiment Mining of Online Product Reviews Based on Domain Ontology[J]. 数据分析与知识发现, 2018, 2(8): 60-68.
[7] Tang Huihui,Wang Hao,Zhang Zixuan,Wang Xueying. Extracting Names of Historical Events Based on Chinese Character Tags[J]. 数据分析与知识发现, 2018, 2(7): 89-100.
[8] Pang Beibei,Gou Juanqiong,Mu Wenxin. Extracting Topics and Their Relationship from College Student Mentoring[J]. 数据分析与知识发现, 2018, 2(6): 92-101.
[9] Ding Shengchun,Liu Menglu,Fu Zhu. Unified Multidimensional Model Based on Knowledge Flow in Conceptual Design[J]. 数据分析与知识发现, 2018, 2(2): 11-19.
[10] Tu Haili,Tang Xiaobo. Building Product Recommendation Model Based on Tags[J]. 数据分析与知识发现, 2017, 1(9): 28-39.
[11] Chen Erjing,Jiang Enbo. Review of Studies on Text Similarity Measures[J]. 数据分析与知识发现, 2017, 1(6): 1-11.
[12] Bai Rujiang,Leng Fuhai,Liao Junhua. An Improved Cosine Text Similarity Computing Method Based on Semantic Chunk Feature[J]. 数据分析与知识发现, 2017, 1(6): 56-64.
[13] Wu Dan,Liu Chang,Li Yi. Changing Sentiments of Pedestrian Navigation System Users[J]. 数据分析与知识发现, 2017, 1(5): 42-51.
[14] Liu Jian,Bi Qiang,Liu Qingxu,Wang Fu. New Content Recommendation Service of Digital Literature[J]. 现代图书情报技术, 2016, 32(9): 70-77.
[15] Ding Heng,Lu Wei. Building Standard Literature Knowledge Service System[J]. 现代图书情报技术, 2016, 32(7-8): 120-128.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938