Please wait a minute...
New Technology of Library and Information Service  2007, Vol. 2 Issue (6): 29-32    DOI: 10.11925/infotech.1003-3513.2007.06.07
Current Issue | Archive | Adv Search |
Web Services Discovery Based on the Fixed-point Semantics
Quan Lixin
(Department of Information Management, Hunan College of Finance and Economics, Changsha 410205,China)
Download: PDF(491 KB)   HTML  
Export: BibTeX | EndNote (RIS)      

On the basis of the relavant theories of fixed-point, using data mining and statistical studies, this paper researches and analyzes the semantics of behavioral constraint and probability statistics of Web services. Aiming at the insufficient of traditional qualitative description of the invoking, this paper also presents an approach for it, and defines the fixed-point function of Web services allocation and its calculating way. The experiment proves the approach aiming at Web services discovery is effectiveness.

Key wordsWeb services      Least fixed-point      Semantic Web      Services discovery     
Received: 12 April 2007      Published: 25 June 2007


Corresponding Authors: Quan Lixin     E-mail:
About author:: Quan Lixin

Cite this article:

Quan Lixin. Web Services Discovery Based on the Fixed-point Semantics. New Technology of Library and Information Service, 2007, 2(6): 29-32.

URL:     OR

1岳昆, 王晓玲, 周傲英. Web服务核心支撑技术——研究综述. 软件学报, 2004,15 (3): 428-442
2Agarwal S,  Handschuh S,  Staab S. Annotation, Composition and Invocation of Semantic Web Service.Journal on Web Semantics,2005, 2 (1): 1-24
3Berardi D,  Calvanese D,  Giacomo G D,  et al. Automatic Composition of E-services that Export Their Behavior. In: Proc. of 1st Int'l. Conf. on Service Oriented Computing, Trento, Italy, 2003
7Rougemount M D. Fixed-point Semantics and the Representation of Algorithms on Large Data. VLDB, 1988: 264-272
9Agrawal R, Imielinski T,  Swami A. Mining Association Rules Between Sets of Items in Large Databases. Proceedings of the ACM SIGMOD Conference on Management of Data,1993:207-216

[1] Xie Qi,Cui Mengtian. Group Similarity Based Hybrid Web Service Recommendation Algorithm[J]. 现代图书情报技术, 2016, 32(6): 80-87.
[2] Xu Deshan, Li Hui, Zhang Yunliang. A Method of Keywords Annotation Based on Linked Triples[J]. 现代图书情报技术, 2015, 31(9): 31-37.
[3] Liu Wei, Xia Cuijuan, Zhang Chunjing. Big Data and Linked Data: The Emerging Data Technology for the Future of Librarianship[J]. 现代图书情报技术, 2013, (4): 2-9.
[4] Zhu Wenjing, Xia Cuijuan, Liu Wei. Analysis of SILK Linkage Discovery Framework[J]. 现代图书情报技术, 2013, (4): 18-24.
[5] Tian Ye, Zhu Zhongming, Liu Shudong. Review of Recommendation System Based on Linked Data[J]. 现代图书情报技术, 2013, 29(10): 1-7.
[6] Niu Yazhen, Zhu Zhongming. Overview about the Methods of Cross-system User Modeling for Personalization Service[J]. 现代图书情报技术, 2012, 28(5): 1-6.
[7] Niu Yazhen, Zhu Zhongming. A Linked Data-driven Semantic User Modeling Framework for Personalization Service[J]. 现代图书情报技术, 2012, (10): 1-7.
[8] Wang Sili, Ma Jianxia, Zhu Zhongming, Zhang Xiuxiu, Ma Jianling. Study on the Linked Method of the Integrated Resources in Semantic Web Patterns[J]. 现代图书情报技术, 2011, 27(6): 32-38.
[9] Shen Zhihong, Zhang Xiaolin. Data Provenance Model in Semantic Web Environment: An Overview[J]. 现代图书情报技术, 2011, 27(4): 1-8.
[10] Chao Lemen, Zhang Yong, Xing Chunxiao. DBpedia and Its Typical Applications[J]. 现代图书情报技术, 2011, 27(3): 80-87.
[11] Li Yazi, Qian Qing, Liu Zheng, Fang An, Hong Na, Wang Junhui. A Novel Framework Research on Integrating Disease Knowledge[J]. 现代图书情报技术, 2011, 27(2): 34-41.
[12] Tao Jun, Sun Tan. Analysis of Framework for RDF Linkage Based on Linked Data[J]. 现代图书情报技术, 2011, 27(12): 1-8.
[13] Li Jun. Research on Semantic Database Freebase[J]. 现代图书情报技术, 2011, 27(10): 18-23.
[14] Huang Yongwen. Research on Linked Data-driven Library Applications[J]. 现代图书情报技术, 2010, 26(5): 1-7.
[15] Bai Haiyan. Linked Data and DBpedia Case Analysis[J]. 现代图书情报技术, 2010, 26(3): 33-39.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938