Please wait a minute...
New Technology of Library and Information Service  2007, Vol. 2 Issue (6): 38-41    DOI: 10.11925/infotech.1003-3513.2007.06.09
Current Issue | Archive | Adv Search |
Information Extraction Based on Calculation of Sentence Similarity
Lian ZhanjunLv XueqiangZhang Yujie2  Shi Shuicai1
1 (Chinese Information Processing Research Center,Beijing Information
Science and Technology University,Beijing 100101,China)
2 (College of Information Science and Engineering,Dalian  Polytechnic University, Dalian 116011,China)
Download: PDF(432 KB)   HTML  
Export: BibTeX | EndNote (RIS)      
Abstract  

This paper gives a new method of information extraction based on calculation of sentence similarity. The topics of the sentences in testing words are labeled by adopting the method of calculation of sentence similarity. The veracity is increased by referencing the distributing of probability of the sentences in the documents. Using the resources of personal information on Internet, the paper achieves a statistic result.

Key wordsInformation extraction      Distributing of probability      Topic      Calculation of sentence similarity     
Received: 10 May 2007      Published: 25 June 2007
: 

TP391

 
Corresponding Authors: Lian Zhanjun     E-mail: dikk12345678@gmail.com
About author:: Lian Zhanjun,Lv Xueqiang,Zhang Yujie,Shi Shuicai

Cite this article:

Lian Zhanjun,Lv Xueqiang,Zhang Yujie,Shi Shuicai. Information Extraction Based on Calculation of Sentence Similarity. New Technology of Library and Information Service, 2007, 2(6): 38-41.

URL:

http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/10.11925/infotech.1003-3513.2007.06.09     OR     http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/Y2007/V2/I6/38

1Zhang Y M,Zhou J F.A Trainable Method for Extracting Chinese Entity Names and Their Relations.In:Proceedings of the Second Chinese Language Processing Workshop,Hong Kong,2000
2Barzilay R, Lee L. Catching the Drift: Probabilistic Content Models. with Application to Generation and Summarization,HLT-NAACL 2004:113-120
3李向阳,苗壮,肖江.无结构文本信息抽取综述.军事通信技术,2004,25(2):32-35
4车万翔,刘挺,秦兵,李生等.基于改进编辑距离的中文相似句子检索.高技术通讯,2004(7):15-20
5李彬,刘挺,秦兵,李生.基于语义依存的汉语句子相似度计算.计算机应用研究,2003(12):15-17
6菅小艳,郑家恒. 基于HMM的农作物信息抽取.自然语言理解与大规模内容计算,2005(10):25-28
7高霄云,杨建林.基于规则的中文时间词和数词的自动识别算法.现代图书情报技术,2007(3): 46-50
8Sigz.垂直搜索引擎技术. http://www.fullsearcher.com/n20051112144420735.asp (Accessed  Sept.10,2006)

[1] Ruihua Qi,Junyi Zhou,Xu Guo,Caihong Liu. Extracting Book Review Topics with Knowledge Base[J]. 数据分析与知识发现, 2019, 3(6): 83-91.
[2] Bengong Yu,Yangnan Chen,Ying Yang. Classifying Short Text Complaints with nBD-SVM Model[J]. 数据分析与知识发现, 2019, 3(5): 77-85.
[3] Jiang Wu,Guanjun Liu,Xian Hu. An Overview of Online Medical and Health Research: Hot Topics, Theme Evolution and Research Content[J]. 数据分析与知识发现, 2019, 3(4): 2-12.
[4] Lu An,Yanping Liang. Selection of Users’ Behaviors Towards Different Topics of Microblog on Public Health Emergencies[J]. 数据分析与知识发现, 2019, 3(4): 33-41.
[5] Tingxin Wen,Yangzi Li,Jingshuang Sun. News Hotspots Discovery Method Based on Multi Factor Feature Selection and AFOA/K-means[J]. 数据分析与知识发现, 2019, 3(4): 97-106.
[6] Zhiqiang Liu,Yuncheng Du,Shuicai Shi. Extraction of Key Information in Web News Based on Improved Hidden Markov Model[J]. 数据分析与知识发现, 2019, 3(3): 120-128.
[7] Guangshang Gao. A Survey of User Profiles Methods[J]. 数据分析与知识发现, 2019, 3(3): 25-35.
[8] Peiyao Zhang,Dongsu Liu. Topic Evolutionary Analysis of Short Text Based on Word Vector and BTM[J]. 数据分析与知识发现, 2019, 3(3): 95-101.
[9] Linna Xi,Yongxiang Dou. Examining Reposts of Micro-bloggers with Planned Behavior Theory[J]. 数据分析与知识发现, 2019, 3(2): 13-20.
[10] Hongqinling Wang,Zhichao Ba,Gang Li. Conversational Topic Intensity Calculation and Evolution Analysis of WeChat Group[J]. 数据分析与知识发现, 2019, 3(2): 33-42.
[11] Jie Zhang,Junbo Zhao,Dongsheng Zhai,Ningning Sun. Patent Technology Analysis of Microalgae Biofuel Industrial Chain Based on Topic Model[J]. 数据分析与知识发现, 2019, 3(2): 52-64.
[12] Yanshuang Mei,Hengmin Zhu,Jing Wei. A Study on the Mechanism of Media Collaboration on the Spread of Internet Public Opinion[J]. 数据分析与知识发现, 2019, 3(2): 65-71.
[13] Junwan Liu,Zhixin Long,Feifei Wang. Finding Collaboration Opportunities from Emerging Issues with LDA Topic Model and Link Prediction[J]. 数据分析与知识发现, 2019, 3(1): 104-117.
[14] Changlei Fu,Li Qian,Huaping Zhang,Huaming Zhao,Jing Xie. Mining Innovative Topics Based on Deep Learning[J]. 数据分析与知识发现, 2019, 3(1): 46-54.
[15] Yuemei Xu,Sining Lv,Lianqiao Cai,Xiaoya Zhang. Analyzing News Topic Evolution with Convolutional Neural Networks and Topic2Vec[J]. 数据分析与知识发现, 2018, 2(9): 31-41.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938   E-mail:jishu@mail.las.ac.cn