Please wait a minute...
New Technology of Library and Information Service  2007, Vol. 2 Issue (6): 56-59    DOI: 10.11925/infotech.1003-3513.2007.06.13
Current Issue | Archive | Adv Search |
Research and Design of CI Track Engine
Song Zhenhui
(School of Management, Shenzhen University, Shenzhen 518060, China)
Download: PDF (484 KB)  
Export: BibTeX | EndNote (RIS)      

On the analysis of problems in the Web-based intelligence collection, a track engine with functions such as track configuration, track training, search creation, intelligence filter, intelligence classification, change detection, distribution interface, intelligence network, relevance feedback is developed, which can support the persistent, push-based and whole cycled Web competitive intelligence demands.

Key wordsCompetitive intelligence      Search engine      Intelligence agent     
Received: 17 April 2007      Published: 25 June 2007


Corresponding Authors: Song Zhenhui     E-mail:
About author:: Song Zhenhui

Cite this article:

Song Zhenhui. Research and Design of CI Track Engine. New Technology of Library and Information Service, 2007, 2(6): 56-59.

URL:     OR

1The Weeks Group, A Framework for Competitive Intelligence. Mar.10,2007)
2Jansen B, Spink A,  Saracevic T. Real Life, Real Users, and Real Needs: A Study and Analysis of User Queries on the Web.Information Processing and Management,2000,36(2): 207-227
3Fox S. Pew Internet Project Data Memo. Mar.10,2007)
4Deolasee P, et al. Adaptive Push-Pull: Disseminating Dynamic Web Data,Proceeding of the 10th International WWW Conference.Hong Kong,2001:265-274
5Fuld & Company, Intelligence Software Report 2002. Mar.10,2007)
6海量智能分词研究版. Mar.10,2007)
7计算所汉语词法分析系统ICTCLAS. Mar.10,2007)
8Negnevitsiky M. 人工智能:智能系统指南.北京:机械工业出版社,2006
9Liu L, et al. Information Monitoring on the Web: A Scalable Solution.World Wide Web Journal,2002,5(12): 263-304
10Boley D, Gini M, Gross R,  Han E,  Hastings K, Karypis G,  Kumar V,  Bamshad M,  Moore J. Document Categorization and Query Generation on the World Wide Web Using Webace. Journal of Artificial Intelligence Review,1999,13(5-6):365-391
11Pazzani M,  Muramatsu J,  Billsus D. Syskill & Webert: Identifying Interesting Web Sites.Proceedings of the 1996 National Conference on Artificial Intelligence (AAAI-96), Portland, 1996
12Godoy G, Amandi A. A User Profiling Architecture for Textual-Based Agents. Proceedings of the Fourth Argentine Symposium on Artificial Intelligence, Sante Fe, Argentina, 2002
13Douglis F, et al. The AT&T Internet Difference Engine: Tracking and Viewing Changes on the Web.World Wide Web, 1998,1(1):27-44
14电子政务工程服务网. Mar.10,2007)
15Google の秘密 - PageRank 徹底解説. Mar.10,2007)
16庞剑锋,卜东波等.基于向量空间模型的文本自动分类系统的研究与实现.计算机应用研究, 2001,18(9):23-26

[1] Sun Lin,Wang Yanzhang. Identifying Competitive Intelligence Based on Knowledge Element[J]. 数据分析与知识发现, 2018, 2(6): 25-36.
[2] Wang Shuyi,Liao Huatao,Wu Chake. Mining News on Competitors with Sentiment Classification[J]. 数据分析与知识发现, 2018, 2(3): 70-78.
[3] Liu Tong,Ni Weijian,Liu Mei. Identifying Terminology from Search Engine Query Logs[J]. 现代图书情报技术, 2016, 32(2): 25-33.
[4] Tong Guoping, Sun Jianjun. User Behavior Analysis Based on Search Engine Log[J]. 现代图书情报技术, 2015, 31(7-8): 80-88.
[5] Wang Xiwei, Zhao Dan, Yang Mengqing, Wei Junwei. Indices and Empirical Research on Search Engine Optimization of the Industry Websites: An Analysis from the Perspective of Information Ecology[J]. 现代图书情报技术, 2015, 31(3): 75-83.
[6] Chen Yong, Li Honglian, Lv Xueqiang. Analysis for the Search Behavior of Web Users[J]. 现代图书情报技术, 2014, 30(12): 10-17.
[7] Wang Ping, Zhi Fengwen, Wang Yi, Shen Tao. Analyzing Competitive Intelligence of Enterprises with Concept Lattice[J]. 现代图书情报技术, 2013, 29(10): 66-72.
[8] Zhang Liyi, Chen Mingying. Research on the Sensitivity and Specificity of Search Engines[J]. 现代图书情报技术, 2011, 27(7/8): 41-46.
[9] Wang Jimin, Lilei Mingzi, Zhang Peng. Co-authorship Network Analysis in the Research Field of Search Engine’s Log Mining[J]. 现代图书情报技术, 2011, 27(4): 58-63.
[10] Zhang Hongbin, Cao Yiqin. A New Classifier Design in a Topic Search Engine by Combining Multi-layer Classifier with Naive Bayes Classification Model[J]. 现代图书情报技术, 2011, 27(3): 73-79.
[11] Zhou Zhicheng. Real-Time Search Suggestions Based on the Clustering of the User’ s Query Intent[J]. 现代图书情报技术, 2011, 27(2): 87-93.
[12] Ke Qing, Cheng Ying, Zheng Yanning, Pan Yuntao. Construction of the Usability Evaluation Indicators on Search Engine[J]. 现代图书情报技术, 2011, (11): 24-30.
[13] Jing Jing, Hong Ying, Jiang Yuanyuan, Gao Xiaofeng. Study on Web Retrieval Query Fusion Based on Relevance Feedback[J]. 现代图书情报技术, 2011, 27(1): 57-62.
[14] Guo Shaoyou. Research on Deep Web Surfacing Based on Common Search Engines[J]. 现代图书情报技术, 2010, 26(2): 24-30.
[15] Fu Zhenzhen,Lu Wei. The Search Engine Optimizing Strategy and Evaluation Based on Keywords[J]. 现代图书情报技术, 2009, 25(6): 61-65.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938