Please wait a minute...
New Technology of Library and Information Service  2007, Vol. 2 Issue (7): 1-4    DOI: 10.11925/infotech.1003-3513.2007.07.01
article Current Issue | Archive | Adv Search |
Study on the Mechanism of Social Tagging in Connotea
Zhang Mei1,2  Zhang Xiaolin1
1(National Science Library, Chinese Academy of Sciences, Beijing 100080, China)
2(Graduate University of Chinese Academy of Sciences, Beijing 100049, China)
Download: PDF (449 KB)  
Export: BibTeX | EndNote (RIS)      

Using connotea as a social tagging test bed, the resources and users are analyzed, patterns are discovered to show the broad resource coverage of tags, strong co-occurrence of tags, high tagging activity among active users, low average tags per resource, regular shifts of users’ tagging interests, and high usage of thesauri terms by users in scientific fields. Suggestions are made to improve structural relations among tags, and to increase tagging granularity.

Key wordsConnotea      Social tagging      Folksonomy      tags      Users&rsquo      behavior     
Received: 03 March 2007      Published: 25 July 2007


Corresponding Authors: Zhang Mei     E-mail:
About author:: Zhang Mei,Zhang Xiaolin

Cite this article:

Zhang Mei,Zhang Xiaolin. Study on the Mechanism of Social Tagging in Connotea. New Technology of Library and Information Service, 2007, 2(7): 1-4.

URL:     OR

1] Hammond T,et al. Social Bookmarking Tools(I):A General Review[J/OL]. D-Lib Magazine. 2005,  11(4). [2007-03-03].
[2] Flickr[EB/OL]. [2007-03-03].
[3] Connotea[EB/OL]. [2007-02-20].
[4] CiteULike[EB/OL].[2007-03-03].
[5] [2007-03-03].
[6] Cattuto C, et al. Collaborative Tagging and Semiotic Dynamics[EB/OL]. [2007-03-03].
[7] Connotea Explorer: Pierre Lindenbaum 2006. Integragen[EB/OL]. [2007-03-03].
[8] WebDoc LCSH Interfaces[EB/OL]. [2007-03-03].
[9] About Connotea[EB/OL]. [2007-03-03].
[10] MeSH Browser[EB/OL]. [2007-03-03].
[11] 马然,陈树年. 网络信息分类组织的新星——Folksonomy. 新世纪图书馆[J],2006(4):37-39.

[1] Xiong Huixiang,Li Xiaomin,Li Yueyan. Group Recommendation Based on Attribute Mining of Book Reviews[J]. 数据分析与知识发现, 2020, 4(2/3): 214-222.
[2] Bocheng Li,Yunqiu Zhang,Kaixi Yang. Extracting Emotion Tags from Comments of Microblog Commodities[J]. 数据分析与知识发现, 2019, 3(9): 115-123.
[3] Lixin Xia,Jieyan Zeng,Chongwu Bi,Guanghui Ye. Identifying Hierarchy Evolution of User Interests with LDA Topic Model[J]. 数据分析与知识发现, 2019, 3(7): 1-13.
[4] Jiaming Liang,Jie Zhao,Zhou Jianlong,Zhenning Dong. Detecting Collusive Fraudulent Online Transaction with Implicit User Behaviors[J]. 数据分析与知识发现, 2019, 3(5): 125-138.
[5] Lu An,Yanping Liang. Selection of Users’ Behaviors Towards Different Topics of Microblog on Public Health Emergencies[J]. 数据分析与知识发现, 2019, 3(4): 33-41.
[6] Guangshang Gao. A Survey of User Profiles Methods[J]. 数据分析与知识发现, 2019, 3(3): 25-35.
[7] Xiang Xue,Yuxiang Zhao. Exploring User Mental Models of Online Music Classification System: Case Study of College Students[J]. 数据分析与知识发现, 2019, 3(2): 1-12.
[8] Linna Xi,Yongxiang Dou. Examining Reposts of Micro-bloggers with Planned Behavior Theory[J]. 数据分析与知识发现, 2019, 3(2): 13-20.
[9] Zhe Hu,Xianjin Zha,Yalan Yan. Interactive Behaviors of Online Health Community Users in Emergency[J]. 数据分析与知识发现, 2019, 3(12): 10-20.
[10] Jing Li,Shuxiao Pan,Xueyan Li,Lijing Jia,Yuzhuo Zhao. Screening Critical Patients with Optimized Classifier Based on Multi Objective Quantum[J]. 数据分析与知识发现, 2019, 3(12): 101-112.
[11] Chongwu Bi,Guanghui Ye,Mingqian Li,Jieyan Zeng. Discovering City Profile Based on Tag Semantic Mining[J]. 数据分析与知识发现, 2019, 3(12): 41-51.
[12] Pingnan Ruan,Qianying Wang,Juan Yang,Yunfeng Wei. Investing Behaviors of Core Communities in Venture Capital Network[J]. 数据分析与知识发现, 2019, 3(12): 84-92.
[13] Xinrui Wang,Yue He. Predicting Stock Market Fluctuations with Social Media Behaviors: Case Study of Sina Finance Blog[J]. 数据分析与知识发现, 2019, 3(11): 108-119.
[14] Jun Dai,Shixin Guo,Hui Wang,Yingchi Liao. Developers’ Collaboration Behaviors and Success of Open Source Projects[J]. 数据分析与知识发现, 2019, 3(10): 110-117.
[15] Lu Wei,Luo Mengqi,Ding Heng,Li Xin. Image Annotation Tags by Deep Learning and Real Users: A Comparative Study[J]. 数据分析与知识发现, 2018, 2(5): 1-10.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938