Please wait a minute...
New Technology of Library and Information Service  2007, Vol. 2 Issue (7): 63-67    DOI: 10.11925/infotech.1003-3513.2007.07.15
Current Issue | Archive | Adv Search |
Application of Vector Space Model in the Similarity Research of Medical Literature
Qiu Yuhong  Guo Jijun
(Library of China Medical University,Shenyang 110001,China)
Download: PDF (477 KB)  
Export: BibTeX | EndNote (RIS)      

In order to improve the precision and the quality of the literature retrieval, this paper explores similarity computing scheme based on Vector Space Model (VSM), and describes the clustering algorithm of biomedical literature on the basis of similarity model. Applying the method of similarity algorithm and cluster analysis, the searched papers can be ranked by degree of similarity.

Key wordsInformation storage and retrieval      Similarity      Vector space model      Cluster analysis     
Received: 01 June 2007      Published: 25 July 2007



Corresponding Authors: Qiu Yuhong     E-mail:
About author:: Qiu Yuhong,Guo Jijun

Cite this article:

Qiu Yuhong,Guo Jijun. Application of Vector Space Model in the Similarity Research of Medical Literature. New Technology of Library and Information Service, 2007, 2(7): 63-67.

URL:     OR

[1] Borlund P. The Concept of Relevance in IR[J]. Journal of the American Society for Information Science and Technology, 2003,50(10):913-925
[2] 焦玉英,雷春明.模糊理论在信息检索中的应用研究[J].情报学报,2000,19(5):519-524
[3] 包金龙.基于向量空间模型的信息检索系统的设计[J].情报杂志,2005,24(7):44-46,49
[4] 侯震宇.信息检索系统中的相关性评价问题[J].现代图书情报技术,2003(2):45-47
[5] 吴光远,何丕廉,曹桂宏,等.基于向量空间模型的词共现研究及其在文本分类中的应用[J].计算机应用,2003,23(6):138-145
[6] 庞剑锋,卜东波.基于向量空间模型的文本自动分类系统的研究与实现[J].计算机应用研究,2001,18(9):23-26
[7] 王娟琴.三种检索模型的比较分析研究——布尔、概率、向量空间模型[J].情报科学,1998,16(3):225-230
[8] 吴丽华,罗云锋,张宏斌.信息检索模型及相关性算法的研究[J].情报杂志,2006,25(12):25-27
[9] 吴其叶.科技查新的查准度和查全度与文献检索的查全率和查准率的差异[J].现代情报,2003,23(9):8-9

[1] Sheng Jiaqi, Xu Xin. Expanding Scholar Labels with Research Similarity and Co-authorship Network[J]. 数据分析与知识发现, 2020, 4(8): 75-85.
[2] Xu Yicong,Tian Xuedong,Li Xinfu,Yang Fang,Shi Qingxuan. Retrieving Mathematical Expressions Based on Hesitant Fuzzy Weight[J]. 数据分析与知识发现, 2020, 4(7): 118-126.
[3] Su Qing,Chen Sizhao,Wu Weimin,Li Xiaomei,Huang Tiankuan. Personalized Recommendation Model Based on Collaborative Filtering Algorithm of Learning Situation[J]. 数据分析与知识发现, 2020, 4(5): 105-117.
[4] Liu Ping,Peng Xiaofang. Calculating Word Similarities Based on Formal Concept Analysis[J]. 数据分析与知识发现, 2020, 4(5): 66-74.
[5] Wei Guohui,Zhang Fengcong,Fu Xianjun,Wang Zhenguo. Similarity Measurement of Traditional Chinese Medicine Components for Cold-hot Nature Discrimination[J]. 数据分析与知识发现, 2020, 4(5): 75-83.
[6] Gao Yuan,Shi Yuanlei,Zhang Lei,Cao Tianyi,Feng Jun. Reconstructing Tour Routes Based on Travel Notes[J]. 数据分析与知识发现, 2020, 4(2/3): 165-172.
[7] Yan Yu,Lei Chen,Jinde Jiang,Naixuan Zhao. Measuring Patent Similarity with Word Embedding and Statistical Features[J]. 数据分析与知识发现, 2019, 3(9): 53-59.
[8] Peng Guan,Yuefen Wang,Zhu Fu. Analyzing Topic Semantic Evolution with LDA: Case Study of Lithium Ion Batteries[J]. 数据分析与知识发现, 2019, 3(7): 61-72.
[9] Peiyao Zhang,Dongsu Liu. Topic Evolutionary Analysis of Short Text Based on Word Vector and BTM[J]. 数据分析与知识发现, 2019, 3(3): 95-101.
[10] Jiao Yan,Jing Ma,Kang Fang. Computing Text Semantic Similarity with Syntactic Network of Co-occurrence Distance[J]. 数据分析与知识发现, 2019, 3(12): 93-100.
[11] Wu Dan,Lu Liuxing. Semantic Changes of Queries from Cross-device Searching[J]. 数据分析与知识发现, 2018, 2(8): 69-78.
[12] Sun Haixia,Wang Lei,Wu Yingjie,Hua Weina,Li Junlian. Matching Strategies for Institution Names in Literature Database[J]. 数据分析与知识发现, 2018, 2(8): 88-97.
[13] Mu Dongmei,Jin Shan,Ju Yuanhong. Finding Association Between Diseases and Genes from Literature Abstracts[J]. 数据分析与知识发现, 2018, 2(8): 98-106.
[14] Zhao Ya’nan,Wang Yuqing. Research on Collaborative Filtering Traveling Products Recommendation Algorithm Based on IUNCF[J]. 数据分析与知识发现, 2018, 2(7): 63-71.
[15] Xiao Mansheng,Zhou Lijuan,Wen Zhicheng. A Fuzzy C-Means Algorithm Based on Huffman Tree[J]. 数据分析与知识发现, 2018, 2(7): 81-88.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938