Please wait a minute...
New Technology of Library and Information Service  2007, Vol. 2 Issue (9): 58-61    DOI: 10.11925/infotech.1003-3513.2007.09.12
Current Issue | Archive | Adv Search |
Automated Folksonomy Research of Tag Resource Based on Synergetic Mechanism
Yue Qingling
(School of Information Management, Wuhan University, Wuhan 430072,China)
Download: PDF(426 KB)   HTML  
Export: BibTeX | EndNote (RIS)      

This paper focuses on the advantages of both formal classification and folksonomy and brings forward the automated folksonomy scheme based on synergetic mechanism.After analyzing its core issues, the author gives the realization of algorithm.

Key wordsTag      Automatic classification      Synergetic mechanism     
Received: 02 July 2007      Published: 25 September 2007


Corresponding Authors: Yue Qingling     E-mail:
About author:: Yue Qingling

Cite this article:

Yue Qingling. Automated Folksonomy Research of Tag Resource Based on Synergetic Mechanism. New Technology of Library and Information Service, 2007, 2(9): 58-61.

URL:     OR

[1] 中国网民Tag使用状况报告[EB/OL].(2007-03-01)[2007-05-20]
[2] 马然,向林燕.网络信息分类法的新亮点——Folksonomy[J].中国索引,2006,4(2):32-34
[3] 毛军.元数据、自由分类法(Folksonomy)和大众的因特网[J].现代图书情报技术,2006(2):1-4,9
[4] Hayman S, Lothian N. Taxonomy Directed Folksomomies:Integrating User Tagging and Controlled Vocabularies for Australian Education Networks. World Library and Information Congress:73rd IFLA General Conference and Council[C].Durban, South Africa. August,2007
[5] Christiaens S.Metadata Mechanisms:From Ontology to Foklsomomy and Back [EB/OL]. (2007-01-15)[2007-05-20]
[6] Ohkura T,Kiyota Y,Nakagawa H. Browsing System for Weblog Articles based on automated folksomomy [EB/OL].(2006-05-26)[2007-05-20]
[7] 焦李承,刘静,钟伟才.协同进化计算与多智能体系统[M].北京:科学出版社,2006
[8] What is Karma Good for[EB/OL]?[2007-05-20]

[1] Yue Yuan,Dongbo Wang,Shuiqing Huang,Bin Li. The Comparative Study of Different Tagging Sets on Entity Extraction of Classical Books[J]. 数据分析与知识发现, 2019, 3(3): 57-65.
[2] Jiaxin Ye,Huixiang Xiong. Recommending Personalized Contents from Cross-Domain Resources Based on Tags[J]. 数据分析与知识发现, 2019, 3(2): 21-32.
[3] Guanghui Ye,Jinglan Hu,Jian Xu,Lixin Xia. Analyzing Growth Trends and Attachment Mode of Social Blog Tags[J]. 数据分析与知识发现, 2018, 2(6): 70-78.
[4] Wei Lu,Mengqi Luo,Heng Ding,Xin Li. Image Annotation Tags by Deep Learning and Real Users: A Comparative Study[J]. 数据分析与知识发现, 2018, 2(5): 1-10.
[5] Huixiang Xiong,Jiaxin Ye,Wuxuan Jiang. Clustering Social Tags with Improved DBSCAN Algorithm[J]. 数据分析与知识发现, 2018, 2(12): 77-88.
[6] Haili Tu,Xiaobo Tang. Building Product Recommendation Model Based on Tags[J]. 数据分析与知识发现, 2017, 1(9): 28-39.
[7] Sanhong Deng,Yuyangzi Fu,Hao Wang. Multi-Label Classification of Chinese Books with LSTM Model[J]. 数据分析与知识发现, 2017, 1(7): 52-60.
[8] Huixiang Xiong,Wuxuan Jiang. Clustering and Recommending Users Based on Tags and Relation Network[J]. 数据分析与知识发现, 2017, 1(6): 36-46.
[9] Meimei Chen,Kangjie Xue. Personalized Recommendation Algorithm of Multi-faceted Trust Tensor Based on Tag Clustering[J]. 数据分析与知识发现, 2017, 1(5): 94-101.
[10] Meimei Chen, Kangjie Xue. Personalized Recommendation Algorithm Based on Modified Tensor Decomposition Model[J]. 数据分析与知识发现, 2017, 1(3): 38-45.
[11] Mengyao Xie,Xuwei Pan. Constructing Dynamic Social Tag Cloud for User Interests[J]. 数据分析与知识发现, 2017, 1(2): 35-40.
[12] Bo Guo,Shouguang Li,Hao Wang,Xiaojun Zhang,Wei Gong,Zhaojun Yu,Yu Sun. Examining Product Reviews with Sentiment Analysis and Opinion Mining[J]. 数据分析与知识发现, 2017, 1(12): 1-9.
[13] Li Xiangdong,Ba Zhichao,Gao Fan. Review of Digital Documents Automatic Classification Research[J]. 现代图书情报技术, 2016, 32(9): 17-26.
[14] Zhu Ling,Xue Chunxiang,Zhang Chengzhi,Fu Zhu. User Tags and Microblog Posts: Case Study of Sina Weibo[J]. 现代图书情报技术, 2016, 32(3): 18-24.
[15] Wang Zhongqun, Jiang Sheng, Xiu Yu, Huang Subin, Wang Qiansong. Information Resource Recommendation Method Based on Dynamic Tag-Resource Network[J]. 现代图书情报技术, 2015, 31(3): 49-57.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611