Please wait a minute...
New Technology of Library and Information Service  2007, Vol. 2 Issue (12): 34-38    DOI: 10.11925/infotech.1003-3513.2007.12.08
Current Issue | Archive | Adv Search |
Literatures Supply Chain Knowledge Representation and Reasoning Based on Ontology Theory
Sun Wandong1  Yue Jun2,3  Zhang Jing4
1(Department of Student Work,Ludong University, Yantai 264025, China)
2(College of Management, Ludong University, Yantai 264025,China)
3(College of Information and Electrical Engineering, China Agricultural University,Beijing 100083,China)
4(Ludong University Library, Yantai 264025,China)
Download: PDF (489 KB)  
Export: BibTeX | EndNote (RIS)      

Knowledge representation and matching-reasoning are two key steps for a semantic knowledge management system. In order to realize the semantic management of literatures supply chain knowledge, the authors put forward the literatures supply chain knowledge Ontology model and formalize the model using RDF (Resource Description Framework) and advanced Voronoi diagram. The authors setup the qualitative reasoning rules based on the RDF formalized model and put forward the quantitative reasoning arithmetic based on the advanced Voronoi diagram formalized model. The experiments show the reasoning rules and arithmetic based on the formalized model could get rational results in literatures supply chain knowledge management.

Key wordsRDF      Ontology      Voronoi diagram      Knowledge management     
Received: 28 October 2007      Published: 25 December 2007


Corresponding Authors: Sun Wandong     E-mail:
About author:: Sun Wandong,Yue Jun,Zhang Jing

Cite this article:

Sun Wandong,Yue Jun,Zhang Jing. Literatures Supply Chain Knowledge Representation and Reasoning Based on Ontology Theory. New Technology of Library and Information Service, 2007, 2(12): 34-38.

URL:     OR

[1] 唐卫宁,徐福缘.基于本体和语义Web服务的供应链知识集成[J].计算机工程,2006(12):167-169. 
[2] 田方斌.基于图书供应链的营销渠道管理[J].图书情报知识,2004(2):88-90.
[3] Neches R, Fikes R E, Gruber T R, et al. Enabling Technology for Knowledge Sharing[J]. AI Magazine, 1991, 12(3): 36-56.
[4] Studer R, Benjamins V R, Fensel D. Knowledge Engineering, Principles and Methods[J]. Data and Knowledge Engineering, 1998, 25(122): 161-197.
[5] Lenat D, Guha R V. Building Large Knowledge-based Systems: Representation and Inference in the CYC Project[M].Addison-Wesley, 1990.
[6] Gruninger M, Fox M S. The Logic of Enterprise Modelling[M]. In:J Brown, D O’Sullivan, Editors, Reengineering the Enterprise, 1995.
[7] Uschold M, King M, Moralee S, et al. The Enterprise Ontology[J]. The Knowledge Engineering Review, 1998,13(1):31-89.
[8] Schreiber G, Wielinga B, Jansweijer W. The Kactus View on the ‘o’ word[M]. Workshop on Basic Ontological Issues in Knowledge Sharing: International Joint Conference on Aritificial Intelligence, 1995.
[9] LiJun Zhu, Lan Tao, Hui Liu. Calculation of the Concept Similarity in Domain Ontology[J]. Journal of South China University of Technology. 2004(32):147-150.
[10] Budanisky A, Hirst G. Semantic Distance in WordNet:An Experimental,Application-oriented Evaluation of Five Measures[C].In:Workshop on WordNet and Other Lexical Resources,Second Meeting of the North American Chapter of the Association for Computational Linguistics, Pittsburgh, USA,2001.
[11] Genest D, Chein M. An Experiment in Document Retrieval Using Conceptual Graphs. Conceptual structures: Fulfilling Peirce’s Dream[R]. Lecture Notes in Artificial Intelligence. August, 1997:1257.
[12] Myaeng, Sung H. Conceptual Graph Matching as a Plausible Inference Technique for Text Retrieval[C]. In:Proc. of the 5th Conceptual Structures Workshop, Held in Conjunction with AAAI-90, Bosto, 1990.

[1] Shaohua Qiang,Yunlu Luo,Yupeng Li,Peng Wu. Ontology Reasoning for Financial Affairs with RBR and CBR[J]. 数据分析与知识发现, 2019, 3(8): 94-104.
[2] Shiqi Deng,Liang Hong. Constructing Domain Ontology for Intelligent Applications: Case Study of Anti Tele-Fraud[J]. 数据分析与知识发现, 2019, 3(7): 73-84.
[3] Zhu Fu,Yuefen Wang,Xuhui Ding. Semantic Representation of Design Process Knowledge Reuse[J]. 数据分析与知识发现, 2019, 3(6): 21-29.
[4] Guangshang Gao. A Survey of User Profiles Methods[J]. 数据分析与知识发现, 2019, 3(3): 25-35.
[5] Ying Wang,Li Qian,Jing Xie,Zhijun Chang,Beibei Kong. Building Knowledge Graph with Sci-Tech Big Data[J]. 数据分析与知识发现, 2019, 3(1): 15-26.
[6] He Youshi,He Shufang. Sentiment Mining of Online Product Reviews Based on Domain Ontology[J]. 数据分析与知识发现, 2018, 2(8): 60-68.
[7] Tang Huihui,Wang Hao,Zhang Zixuan,Wang Xueying. Extracting Names of Historical Events Based on Chinese Character Tags[J]. 数据分析与知识发现, 2018, 2(7): 89-100.
[8] Pang Beibei,Gou Juanqiong,Mu Wenxin. Extracting Topics and Their Relationship from College Student Mentoring[J]. 数据分析与知识发现, 2018, 2(6): 92-101.
[9] Ding Shengchun,Liu Menglu,Fu Zhu. Unified Multidimensional Model Based on Knowledge Flow in Conceptual Design[J]. 数据分析与知识发现, 2018, 2(2): 11-19.
[10] Wang Yuefen,Fu Zhu,Wu Peng. Tech-Framework for Semantic Knowledge Management in Conceptual Design[J]. 数据分析与知识发现, 2018, 2(2): 2-10.
[11] Fu Zhu,Jiang Yuxing,Wang Yuefen. Modeling Conceptual Design Process for Dynamic Knowledge Management and Reuse[J]. 数据分析与知识发现, 2018, 2(2): 20-28.
[12] Wang Ying,Wu Sizhu. Converting STKOS Metathesaurus to RDF Triples with R2RML[J]. 数据分析与知识发现, 2018, 2(12): 89-97.
[13] Tu Haili,Tang Xiaobo. Building Product Recommendation Model Based on Tags[J]. 数据分析与知识发现, 2017, 1(9): 28-39.
[14] Chen Erjing,Jiang Enbo. Review of Studies on Text Similarity Measures[J]. 数据分析与知识发现, 2017, 1(6): 1-11.
[15] Bai Rujiang,Leng Fuhai,Liao Junhua. An Improved Cosine Text Similarity Computing Method Based on Semantic Chunk Feature[J]. 数据分析与知识发现, 2017, 1(6): 56-64.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938