Please wait a minute...
New Technology of Library and Information Service  2008, Vol. 24 Issue (2): 64-68    DOI: 10.11925/infotech.1003-3513.2008.02.12
Current Issue | Archive | Adv Search |
A Content Analysis of Knowledge Discovery Papers in Information Science and Library Science
Wang Min1,2  Zhang Zhiqiang1
1(The Lanzhou Branch of the National Science Library, CAS, Lanzhou 730000,China)
2(Graduate University of the Chinese Academy of Sciences, Beijing 100049, China)
Download: PDF(475 KB)   HTML  
Export: BibTeX | EndNote (RIS)      
Abstract  

Based on the method of content analysis,the scientific documentations from the core periodicals of our country, SCIE and SSCI databases in information science and library science fields are analyzed. The comparative analysis is made on the distribution statistics of the articles subjects of domestic and foreign databases.Then the trends and hotspots of knowledge discovery in information science and library science fields at present are put forward.

Key wordsKnowledge discovery      data mining      content analysis      Scientific documentation     
Received: 30 October 2007      Published: 25 February 2008
: 

G254.2

 
Corresponding Authors: Wang Min     E-mail: wangmin2005@yahoo.com.cn
About author:: Wang Min,Zhang Zhiqiang

Cite this article:

Wang Min,Zhang Zhiqiang. A Content Analysis of Knowledge Discovery Papers in Information Science and Library Science. New Technology of Library and Information Service, 2008, 24(2): 64-68.

URL:

http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/10.11925/infotech.1003-3513.2008.02.12     OR     http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/Y2008/V24/I2/64

[1] Usama M Fayyad, Gregory Piatetsky-Shapiro, Padhraic Smyth, et al. Knowledge Discovery and Data Mining: Towards a Unifying Framework[M]. MA: MIT Press, 1996: 88-92.
[2] Usama M Fayyad, Gregory Piatetsky-Shapiro, Padhraic Smyth.From Data Mining to Knowledge Discovery in Databases[J].American Association for Artificial Intellgence,1996(FALL):38.
[3] 史忠植.知识发现[M].北京:清华大学出版社,2002:3.
[4] 韩惠琴,刘柏嵩.数字图书馆中的知识发现[J].情报学报,2001(6):324.
[5] 曾铮.知识发现和挖掘[A]//曾民族.知识技术及其应用[M].北京:科学技术文献出版社,2005:234.
[6] Jiawei Han,Micheline Kamber. 数据挖掘概念与技术[M]. 范明,孟小峰(译).北京:机械工业出版社,2006:20.
[7] Sherry Y.Chen,Xiaohui Liu.The Contribution of Data Mining to Information Science[J].Journal of Information Science,2004,30(6):550.
[8] H. Borko. Information Science: What is it[J].American Documentation,1998,19(1): 3-5.
[9] Chan-Chine Chang,Ruey-Shun Chen. Using Data Mining Technology to Solve Classification Problems:A Case Study of Campus Digital Library[J]. The Electronic Library, 2006,24(3):307.

[1] Jing Shi,Chenlu Li,Yuxing Qian,Liqin Zhou,Bin Zhang. Information Needs of Domestic and International HCQA Users ——An Empirical Analysis[J]. 数据分析与知识发现, 2019, 3(5): 1-10.
[2] Quan Lu,Anqi Zhu,Jiyue Zhang,Jing Chen. Research on User Information Requirement in Chinese Network Health Community: Taking Tumor-forum Data of Qiuyi as an Example[J]. 数据分析与知识发现, 2019, 3(4): 22-32.
[3] Dongmei Mu,Hui Fa,Ping Wang,Jing Sun. Research on Disease Risk Factors on Structural Equation Model[J]. 数据分析与知识发现, 2019, 3(4): 80-89.
[4] Juhua Wu,Yu Wang,Ming Li,Shaoyun Cai. Knowledge Discovery of Online Health Communities with Weighted Knowledge Network[J]. 数据分析与知识发现, 2019, 3(2): 108-117.
[5] Jiying Hu,Jing Xie,Li Qian,Changlei Fu. Constructing Big Data Platform for Sci-Tech Knowledge Discovery with Knowledge Graph[J]. 数据分析与知识发现, 2019, 3(1): 55-62.
[6] Xin Wang,Wen’gang Feng. Review of Techniques Detecting Online Extremism and Radicalization[J]. 数据分析与知识发现, 2018, 2(10): 2-8.
[7] Yongnan Li. Using Bayes Theory to Classify Counter Terrorism Intelligence[J]. 数据分析与知识发现, 2018, 2(10): 9-14.
[8] Zhiqiang Zhang,Shaoping Fan,Xiujuan Chen. Biomedical Informatics Studies for Knowledge Discovery in Precision Medicine[J]. 数据分析与知识发现, 2018, 2(1): 1-8.
[9] Dongmei Mu,Ping Wang,Danning Zhao. Reducing Data Dimension of Electronic Medical Records: An Empirical Study[J]. 数据分析与知识发现, 2018, 2(1): 88-98.
[10] Zhongyi Hu,Chaoqun Wang,Jiang Wu. Identifying Phishing Websites with Multiple Online Data Sources[J]. 数据分析与知识发现, 2017, 1(6): 47-55.
[11] Siwei Jiang,Zhenping Xie,Meijie Chen,Ming Cai. Self-Explainable Reduction Method for Mixed Feature Data Modeling[J]. 数据分析与知识发现, 2017, 1(12): 92-100.
[12] Cong Wu,Yuxiang Zhao,Qinghua Zhu. Analyzing Crowdfunding Videos Based on Task Presentation——Case Study of zhongchou.com[J]. 数据分析与知识发现, 2017, 1(10): 64-76.
[13] Xiufang Xie,Xiaolin Zhang. Integrated Analysis and Visualization of Sci-Tech Roadmaps: Case Study of Renewable Energy[J]. 数据分析与知识发现, 2017, 1(1): 16-25.
[14] Mu Dongmei,Ren Ke. Discovering Knowledge from Electronic Medical Records with Three Data Mining Algorithms[J]. 现代图书情报技术, 2016, 32(6): 102-109.
[15] Liu Hongxu,Qu Jiansheng. Using Meta-analysis Software for Domain Knowledge Discovery[J]. 现代图书情报技术, 2016, 32(5): 9-21.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938   E-mail:jishu@mail.las.ac.cn