Please wait a minute...
New Technology of Library and Information Service  2008, Vol. 24 Issue (5): 50-55    DOI: 10.11925/infotech.1003-3513.2008.05.09
Current Issue | Archive | Adv Search |
ICV: A Visual Model of Information Communication
Yang Feng
(Guangdong Province Key LAB of Electronic Commerce Market Application Technology, Guangdong University of Business Studies,Guangzhou 510320, China)
Download: PDF (584 KB)  
Export: BibTeX | EndNote (RIS)      

According to the problem of how to research the complicated process of information communication, the author presents an information visualization-based method. After analyzing the essence of information communication, the features are selected for visualization and an ICV model of information communication is given. The author designs a prototype system for explaining the feasibility and the pragmatism in analyzing in enterprise decision-making and social problem. At last, some improvements are pointed out.

Key wordsInformation communication      Information visualization      Information communication visualization      Model     
Received: 17 December 2007      Published: 25 May 2008


Corresponding Authors: Yang Feng     E-mail:
About author:: Yang Feng

Cite this article:

Yang Feng. ICV: A Visual Model of Information Communication. New Technology of Library and Information Service, 2008, 24(5): 50-55.

URL:     OR

[1] Chen C M. Top 10 Unsolved Information Visualization Problems[J].IEEE Computer Graphics and Applications,2005,25(4):12-16.
[2] 周宁.信息可视化在信息管理中的新进展[J].现代图书情报技术,2003(4):4,7.
[3] 周宁,刘玮,赵丹.信息提供的可视化研究[J].情报科学,2004,22(3):257-260,275.
[4] 周宁.信息资源描述与存储的可视化研究[J].情报科学,2004,22(1):9-12.
[5] Zhou N,Yang F,Liu W.Commodity Interesting Visual Tree: A Visualized Model of Customer Interests Based on Commodity Hierarchical Structure in E-commerce Site[C]. The 4th Wuhan International Conference on E-Business,2005:689-694.
[6] 周宁.21世纪信息组织与检索的可视化、智能化发展方向[J].现代图书情报技术,2002(4):4,6.
[7] Ohwada H,Mizoguchi F.Integrating Information Visualization and Retrieval for WWW Information Discovery[J].Theoretical Computer Science,2003,292(2):547-571.
[8] Condon E,Golden B,Lele S,et al. A Visualization Model Based on Adjacency Data[J].Decision Support Systems,2002,33(4):349-362.
[9] Zhou N,Yang F,Liu W,et al. Discovering B-clusters & B-authorities in E-commerce Site by Visualized Method Based on Undirected Graph[C].The Third Wuhan International Conference on E-Business,2004:980-988.
[10] Meghabghab G.Discovering Authorities and Hubs in Different Topological Web Graph Structures[J].Information Processing and Management,2002,38(1):111-140.
[11] 中国标准出版社.计算机软件工程规范国家标准汇编2000[M].北京:中国标准出版社,2000:23-70.
[12] Ronald J N. Object-oriented Systems Analysis and Design[M]. Prentice Hall,Inc.,1998.
[13] Nassi S B.Flowchart Techniques for Structured Programming[J]. SIGPLAN Notices of the ACM,1973,8(8):12-26.
[14] Stephen R S.Software Engineering with Java[M]. McGraw-Hill Companies,Inc.,1999.
[15] 陈松乔,任胜兵,王国军.现代软件工程[M].北京:清华大学出版社,2003:31-32.
[16] 汤庸.软件工程方法与管理[M].北京:冶金工业出版社,2002:90-95.
[17] 周宁,杨峰.信息可视化系统的RDV模型研究[J].情报学报,2004,23(5):619-624.
[18] 马费成.信息管理学基础[M].武汉:武汉大学出版社,2000:50-60.

[1] Zhao Yang, Zhang Zhixiong, Liu Huan, Ding Liangping. Classification of Chinese Medical Literature with BERT Model[J]. 数据分析与知识发现, 2020, 4(8): 41-49.
[2] Xu Chenfei, Ye Haiying, Bao Ping. Automatic Recognition of Produce Entities from Local Chronicles with Deep Learning[J]. 数据分析与知识发现, 2020, 4(8): 86-97.
[3] Wei Wu, Xie Xingzheng. The Determinants of Continuance Intention to Pay: Empirical Research from Online Knowledge Payment Users[J]. 数据分析与知识发现, 2020, 4(8): 119-129.
[4] Shen Zhihong,Zhao Zihao,Wang Haibo. Big Data Technology Stack Shifting: From SQL Centric to Graph Centric[J]. 数据分析与知识发现, 2020, 4(7): 50-65.
[5] Wang Xinyun,Wang Hao,Deng Sanhong,Zhang Baolong. Classification of Academic Papers for Periodical Selection[J]. 数据分析与知识发现, 2020, 4(7): 96-109.
[6] Yue Lixin,Liu Ziqiang,Hu Zhengyin. Evolution Analysis of Hot Topics with Trend-Prediction[J]. 数据分析与知识发现, 2020, 4(6): 22-34.
[7] Cai Yongming,Liu Lu,Wang Kewei. Identifying Key Users and Topics from Online Learning Community[J]. 数据分析与知识发现, 2020, 4(6): 69-79.
[8] Su Qing,Chen Sizhao,Wu Weimin,Li Xiaomei,Huang Tiankuan. Personalized Recommendation Model Based on Collaborative Filtering Algorithm of Learning Situation[J]. 数据分析与知识发现, 2020, 4(5): 105-117.
[9] Deng Siyi,Le Xiaoqiu. Coreference Resolution Based on Dynamic Semantic Attention[J]. 数据分析与知识发现, 2020, 4(5): 46-53.
[10] Wei Guohui,Zhang Fengcong,Fu Xianjun,Wang Zhenguo. Similarity Measurement of Traditional Chinese Medicine Components for Cold-hot Nature Discrimination[J]. 数据分析与知识发现, 2020, 4(5): 75-83.
[11] Yu Chuanming,Yuan Sai,Zhu Xingyu,Lin Hongjun,Zhang Puliang,An Lu. Research on Deep Learning Based Topic Representation of Hot Events[J]. 数据分析与知识发现, 2020, 4(4): 1-14.
[12] Zhang Dongyu,Cui Zijuan,Li Yingxia,Zhang Wei,Lin Hongfei. Identifying Noun Metaphors with Transformer and BERT[J]. 数据分析与知识发现, 2020, 4(4): 100-108.
[13] Yang Xu,Qian Xiaodong. Synchronous Clustering Algorithm for Social Networks Based on Improved Vicsek Model[J]. 数据分析与知识发现, 2020, 4(4): 119-128.
[14] Pan Youneng,Ni Xiuli. Recommending Online Medical Experts with Labeled-LDA Model[J]. 数据分析与知识发现, 2020, 4(4): 34-43.
[15] Shen Zhuo,Li Yan. Mining User Reviews with PreLM-FT Fine-Grain Sentiment Analysis[J]. 数据分析与知识发现, 2020, 4(4): 63-71.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938