Please wait a minute...
New Technology of Library and Information Service  2008, Vol. 24 Issue (6): 34-40    DOI: 10.11925/infotech.1003-3513.2008.06.07
Current Issue | Archive | Adv Search |
Analysis of the Factors Affecting the Performance of CRF-based Keywords Extraction Model
Zhang Chengmin1,2   Xu Xin3   Zhang Chengzhi 4,5
1(Department of Information Management, Nanjing University, Nanjing 210093,China)
2(Library of China Pharmaceutical University, Nanjing 210009,China)
3(Department of Informatics, East China Normal University, Shanghai  200241,China)
4(Department of Information Management, Nanjing University of Science & Technology, Nanjing 210094,China)
5(Institute of Scientific & Technical Information of China, Beijing 100038,China)
Download: PDF (452 KB)  
Export: BibTeX | EndNote (RIS)      

 The CRF model can use the features of documents more sufficiently and effectively. Keywords extraction based on CRF is proposed and implemented. The factors affecting the performance of the CRF-based keyword extraction model are analyzed. The factors include: the performance of text segmentation, the scale of training corpus, the number of figure and the parameters setting of the CRF model.

Key wordsAutomatic indexing      Keywords extraction      Conditional random fields      Machine learning     
Received: 31 January 2008      Published: 25 June 2008



Corresponding Authors: Zhang Chengmin     E-mail:
About author:: Zhang Chengmin,Xu Xin,Zhang Chengzhi

Cite this article:

Zhang Chengmin,Xu Xin,Zhang Chengzhi. Analysis of the Factors Affecting the Performance of CRF-based Keywords Extraction Model. New Technology of Library and Information Service, 2008, 24(6): 34-40.

URL:     OR

[1] Salton G, Yang C S, Yu C T. A Theory of Term Importance in Automatic Text Analysis[J]. Journal of the American society for Information Science, 1975, 26(1): 33-44.
[2] 韩客松, 王永成. 中文全文标引的主题词标引和主题概念标引方法[J]. 情报学报, 2001, 20(2): 212-216.
[3] Frank E, Paynter G W, Witten I H. Domain-Specific Keyphrase Extraction[C]. In: Proceedings of the 16th International Joint Conference on Aritifcal Intelliegence, Stockholm, Sweden, Morgan Kaufmann, 1999: 668-673.
[4] Turney P D. Learning to Extract Keyphrases from Text[R]. NRC Technical Report ERB-1057, National Research Council, Canada, 1999: 1-43.
[5] 张庆国, 薛德军, 张振海, 等. 海量数据集上基于特征组合的关键词自动抽取[J]. 情报学报, 2006, 25(5): 587-593.
[6] Lafferty J, McCallum A, Pereira F. Conditional Random Fields: Probabilistic Models for Segementing and Labeling Sequence Data[C]. In: Proceedings of the 18th International Conference on Machine Learning (ICML01), Williamstown, MA, USA, 2001: 282-289.
[7] CRF++: Yet Another CRF Toolkit[CP/OL]. [2005-12-20].
[8] 中文自然语言处理开放平台[EB/OL].[2005-12-20].
[9] Yang W F, Li X. Chinese Keyword Extraction Based on Max-dupliated Strings of the Documents[C]. In: Proceedings of the 25th Annual International Conference on Research and Development in Information Retrieval (SIGIR02), Tampere, Finland, 2002: 439-440.
[10] Lexicon_full_2000[DB/OL]. [2006-04-20].
[11] HaCohen-Kerner Y. Automatic Extraction of Keywords from Abstracts[C]. In: Proceedings of the 7th International Conference on Knowledge-Based Intelligent Information and Engineering Systems. Berlin, Heidelberg: Springer-Verlag, 2003: 843-849.

[1] Chen Dong,Wang Jiandong,Li Huiying,Cai Sihang,Huang Qianqian,Yi Chengqi,Cao Pan. Forecasting Poultry Turnovers with Machine Learning and Multiple Factors[J]. 数据分析与知识发现, 2020, 4(7): 18-27.
[2] Liang Ye,Li Xiaoyuan,Xu Hang,Hu Yiran. CLOpin: A Cross-Lingual Knowledge Graph Framework for Public Opinion Analysis and Early Warning[J]. 数据分析与知识发现, 2020, 4(6): 1-14.
[3] Yang Heng,Wang Sili,Zhu Zhongming,Liu Wei,Wang Nan. Recommending Domain Knowledge Based on Parallel Collaborative Filtering Algorithm[J]. 数据分析与知识发现, 2020, 4(6): 15-21.
[4] Zhao Ping,Sun Lianying,Tu Shuai,Bian Jianling,Wan Ying. Identifying Scenic Spot Entities Based on Improved Knowledge Transfer[J]. 数据分析与知识发现, 2020, 4(5): 118-126.
[5] Xiong Xin,Wang Hao,Zhang Haichao,Zhang Baolong. Impacts of Chinese Term Granularity on Measuring Term Discriminative Capacity[J]. 数据分析与知识发现, 2020, 4(2/3): 143-152.
[6] Ruojia Wang,Lu Zhang,Jimin Wang. Automatic Triage of Online Doctor Services Based on Machine Learning[J]. 数据分析与知识发现, 2019, 3(9): 88-97.
[7] Gang Li,Huayang Zhou,Jin Mao,Sijing Chen. Classifying Social Media Users with Machine Learning[J]. 数据分析与知识发现, 2019, 3(8): 1-9.
[8] Mingzhu Sun,Jing Ma,Lingfei Qian. Extracting Keywords Based on Topic Structure and Word Diagram Iteration[J]. 数据分析与知识发现, 2019, 3(8): 68-76.
[9] Jiahui Hu,An Fang,Wanqing Zhao,Chenliu Yang,Huiling Ren. Annotating Chinese E-Medical Record for Knowledge Discovery[J]. 数据分析与知识发现, 2019, 3(7): 123-132.
[10] Qingtian Zeng,Xiaohui Hu,Chao Li. Extracting Keywords with Topic Embedding and Network Structure Analysis[J]. 数据分析与知识发现, 2019, 3(7): 52-60.
[11] Jinzhu Zhang,Yiming Hu. Extracting Titles from Scientific References in Patents with Fusion of Representation Learning and Machine Learning[J]. 数据分析与知识发现, 2019, 3(5): 68-76.
[12] Zhiqiang Liu,Yuncheng Du,Shuicai Shi. Extraction of Key Information in Web News Based on Improved Hidden Markov Model[J]. 数据分析与知识发现, 2019, 3(3): 120-128.
[13] Hongxia Xu,Chunwang Li. Review of Knowledge Extraction of Scientific Literature[J]. 数据分析与知识发现, 2019, 3(3): 14-24.
[14] Zhen Zhang,Jin Zeng. Extracting Keywords from User Comments: Case Study of Meituan[J]. 数据分析与知识发现, 2019, 3(3): 36-44.
[15] Jing Li,Shuxiao Pan,Xueyan Li,Lijing Jia,Yuzhuo Zhao. Screening Critical Patients with Optimized Classifier Based on Multi Objective Quantum[J]. 数据分析与知识发现, 2019, 3(12): 101-112.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938