Please wait a minute...
New Technology of Library and Information Service  2008, Vol. 24 Issue (6): 56-60    DOI: 10.11925/infotech.1003-3513.2008.06.11
Current Issue | Archive | Adv Search |
Application Research on Monitoring & Analysis in Hi-Tech Industry’s Technology Innovation
Zhang Cheng1  Zhu Donghua2  Xu Zhijun1
1(Zhuhai Branch of Guangdong Co., Ltd., China Mobile Group, Zhuhai 519015, China)
2(School of Management & Economics, Beijing Institute of Technology, Beijing 100081, China)
Download: PDF(738 KB)   HTML  
Export: BibTeX | EndNote (RIS)      

 According to the characteristics of the hi-tech industry, this paper researches on monitoring & analysis of technology innovation, sets up an index system of analysis. And it takes the carbon nanotubes industry as the research object to carry on the empirical research. The purpose is to understand the hi-tech industry’s technology innovation present condition and the future development directions, draw up the strategy to provide the decision reference for the government and business enterprise.

Key wordsHi-tech industry      Technology innovation      Monitoring &      analysis      Carbon nanotubes     
Received: 12 March 2008      Published: 25 June 2008


Corresponding Authors: Zhang Cheng     E-mail:
About author:: Zhang Cheng,Zhu Donghua,Xu Zhijun

Cite this article:

Zhang Cheng,Zhu Donghua,Xu Zhijun. Application Research on Monitoring & Analysis in Hi-Tech Industry’s Technology Innovation. New Technology of Library and Information Service, 2008, 24(6): 56-60.

URL:     OR

[1] 李维胜,秦长文.高技术企业发展的现状分析及对策建议[J].中国科技论坛,2005(4):70-73.
[2] 张德贤,陈中慧,戴桂林. 高新技术产业化协同过程探讨[J].中国管理科学,1997,5(4):47-51.
[3] Lee H,Deguchi H.Technological Innovation of High-tech Industry and Patent Policy - Agent Based Simulation with Double Loop Learning[C].  Proceeding of 4th Pacific Rim International Workshop on Multi-Agents, Intelligent Agents: Specification Modeling and Application, 2001:168-82.
[4] Ku  Y  L, Liau  S J, Hsing W C. The High-tech Milieu and Innovation-oriented Development[J].Technovation,2005,25(2):145-153.
[5] 穆荣平. 中国高新技术产业国际竞争力评价指标研究[J]. 中国科技论坛,2000(3):28-31.
[6] 赵兰香,吴灼亮. 中国高新技术产业竞争力分析[J].中国创业投资与高科技,2006(2):46-47.
[7] 朱东华, 袁军鹏. 基于数据挖掘的科技监测方法研究 [J]. 管理工程学报,2004(4):135-139.
[8] Zhu D, Porter A L. Automated Extraction and Visualization of Information for Technological Intelligence and Forecasting[J].Technological Forecasting & Social Change, 2002(69):495-506.
[9] 叶苏,顾新,杨早林,等. 国外高技术企业运用专利制度的策略及趋势研究[J]. 软科学,2005,19(4):84-87.
[10] 马晓光,沈全锋,于浩. 高技术领域急需专利保驾护航[J].科研管理,2002,23(5):20-25.
[11] 汤才祥. 透过中国专利文献分类信息看我国高新技术产业[J].电子知识产权,2003(6):11-15.
[12] 郭韬. 高新技术企业成长生命周期中的组织创新[J]. 工业技术经济,2005,24(7):72-76.
[13] 任智军,朱东华,荆雷. 基于可视化数据挖掘的管理科学科技文本分析研究[J]. 科学学与科学技术管理,2006(1):8-12.
[14] 余翔,蒋文光. 世界纳米专利比较分析和我国纳米专利战略研究[J].研究与发展管理,2004,16(4):85-90.
[15] 李亚青,贾杲,邢润川. 技术创新与纳米技术产业化问题[J]. 科学学研究,2000,18(1):83-90.

[1] Ru Li,Rui Li,Jie Jiang,Huayi Wu. Spatio-Temporal Characteristics of WMTS Access Sessions[J]. 数据分析与知识发现, 2019, 3(6): 1-11.
[2] Ming Yi,Tingting Zhang. Ranking Answer Quality of Popular Q&A Community[J]. 数据分析与知识发现, 2019, 3(6): 12-20.
[3] Yanan Yang,Wenhui Zhao,Jian Zhang,Shen Tan,Beibei Zhang. Visualizing Policy Texts Based on Multi-View Collaboration[J]. 数据分析与知识发现, 2019, 3(6): 30-41.
[4] Xiaozhou Dong,Xinkang Chen. E-Coupon and Economic Performance of E-commerce[J]. 数据分析与知识发现, 2019, 3(6): 42-49.
[5] Qikai Cheng,Jiamin Wang,Wei Lu. Discovering Domain Vocabularies Based on Citation Co-word Network[J]. 数据分析与知识发现, 2019, 3(6): 57-65.
[6] Jing Shi,Chenlu Li,Yuxing Qian,Liqin Zhou,Bin Zhang. Information Needs of Domestic and International HCQA Users ——An Empirical Analysis[J]. 数据分析与知识发现, 2019, 3(5): 1-10.
[7] Guangshang Gao. Reviewing Basic Methods of Entity Resolution[J]. 数据分析与知识发现, 2019, 3(5): 27-40.
[8] Jiang Wu,Yinghui Zhao,Jiahui Gao. Research on Weibo Opinion Leaders Identification and Analysis in Medical Public Opinion Incidents[J]. 数据分析与知识发现, 2019, 3(4): 53-62.
[9] Zhiqiang Wu,Zhongming Zhu,Wei Liu,Sili Wang. Research and Practice on the Extension of Knowledge Analysis and Visualization Function in CSpace[J]. 数据分析与知识发现, 2019, 3(3): 112-119.
[10] Linna Xi,Yongxiang Dou. Examining Reposts of Micro-bloggers with Planned Behavior Theory[J]. 数据分析与知识发现, 2019, 3(2): 13-20.
[11] Hongqinling Wang,Zhichao Ba,Gang Li. Conversational Topic Intensity Calculation and Evolution Analysis of WeChat Group[J]. 数据分析与知识发现, 2019, 3(2): 33-42.
[12] Cuiqing Jiang,Yibo Guo,Yao Liu. Constructing a Domain Sentiment Lexicon Based on Chinese Social Media Text[J]. 数据分析与知识发现, 2019, 3(2): 98-107.
[13] Bengong Yu,Peihang Zhang,Qingtang Xu. Selecting Products Based on F-BiGRU Sentiment Analysis[J]. 数据分析与知识发现, 2018, 2(9): 22-30.
[14] Jiehua Wu,Jing Shen,Bei Zhou. Classifying Multilayer Social Network Links Based on Transfer Component Analysis[J]. 数据分析与知识发现, 2018, 2(9): 88-99.
[15] Ziming Zeng,Qianwen Yang. Sentiment Analysis for Micro-blogs with LDA and AdaBoost[J]. 数据分析与知识发现, 2018, 2(8): 51-59.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938