Please wait a minute...
New Technology of Library and Information Service  2008, Vol. 24 Issue (7): 47-53    DOI: 10.11925/infotech.1003-3513.2008.07.10
Current Issue | Archive | Adv Search |
Study on the Characters of Language Used in Web Searching
Lai Maosheng  Qu Peng
(Department of Information Management, Peking University, Beijing 100871, China)
Download: PDF(560 KB)   HTML  
Export: BibTeX | EndNote (RIS)      
Abstract  

This paper concerns on the characteristics of language used in the Web searching and seeks to make an exploratory study on the syntax and semantic query problems. The research mainly uses search engine query log analysis method, then compares with the results from Web questionnaire analysis. At last, the authors come to the conclusion on the characteristics of syntax, term category, assistant words, and principal words. The syntax in Web searching is very stable; users rely greatly on assistant words; the natural-language-character of query is obvious; and the query syntax is very simple. Search engines has become an helpful supplement for traditional information retrieval tools; forms unique contents, in which consists mostly entertainment and non-mainstream culture, and which differentiate search engine from traditional information retrieval tools.

Key wordsRetrieval language      Searching      Log mining      User      Language usage     
Received: 07 March 2008      Published: 25 July 2008
: 

G352

 
Corresponding Authors: Lai Maosheng     E-mail: laims@pku.edu.cn
About author:: Lai Maosheng,Qu Peng

Cite this article:

Lai Maosheng,Qu Peng. Study on the Characters of Language Used in Web Searching. New Technology of Library and Information Service, 2008, 24(7): 47-53.

URL:

http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/10.11925/infotech.1003-3513.2008.07.10     OR     http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/Y2008/V24/I7/47

[1] 王继民, 陈翀, 彭波. 大规模中文搜索引擎的用户日志分析[J]. 华南理工大学学报(自然科学版), 2004, 32(S): 1-5.
[2] 王继民, 彭波. 搜索引擎用户访问量模型[J]. 计算机工程与应用, 2004, 40(25): 9-11,30.
[3] 王继民, 彭波. 搜索引擎用户点击行为分析[J]. 情报学报, 2006, 25(2): 154-162.
[4] 王继民, 孟涛. Web搜索引擎日志挖掘研究[R]. 中国人搜索行为研究实验室年度报告2006. 北京: 北京大学信息管理系, 2006: 35-48.
[5] Jansen B J, Spink A, Saracevic T. Real Life, Real Users, and Real Needs: A study and Analysis of User Queries on the Web[J]. Information Processing and Management, 2000, 36(2): 207-227.
[6] Spink A, Jansen B J, Koshman S. From E-sex to E-commerce: Web Search  Changes[J]. IEEE Computer, 2002, 35(3): 107-109.
[7] Spink A, Ozmutlu H C, Ozmutlu S. Multitasking Information Seeking and Searching Processes[J]. Journal of the American Society for Information Science and Technology, 2002, 53(8): 639-652.
[8] Ozmutlu S, Spink A, Ozmutlu H C. A Day in the Life of Web Searching: An Exploratory Study[J]. Information Processing and Management, 2004, 40(2):319-345.
[9] Jansen B J, Spink A. How are We Searching the World Wide Web? A Comparison of Nine Search EngineTtransaction Logs[J]. Information Processing and Management, 2006, 42(1):248-263.

[1] Lu An,Yanping Liang. Selection of Users’ Behaviors Towards Different Topics of Microblog on Public Health Emergencies[J]. 数据分析与知识发现, 2019, 3(4): 33-41.
[2] Guangshang Gao. A Survey of User Profiles Methods[J]. 数据分析与知识发现, 2019, 3(3): 25-35.
[3] Zhen Zhang,Jin Zeng. Extracting Keywords from User Comments: Case Study of Meituan[J]. 数据分析与知识发现, 2019, 3(3): 36-44.
[4] Linna Xi,Yongxiang Dou. Examining Reposts of Micro-bloggers with Planned Behavior Theory[J]. 数据分析与知识发现, 2019, 3(2): 13-20.
[5] Guijun Yang,Xue Xu,Fuqiang Zhao. Predicting User Ratings with XGBoost Algorithm[J]. 数据分析与知识发现, 2019, 3(1): 118-126.
[6] Jiying Hu,Jing Xie,Li Qian,Changlei Fu. Constructing Big Data Platform for Sci-Tech Knowledge Discovery with Knowledge Graph[J]. 数据分析与知识发现, 2019, 3(1): 55-62.
[7] Jing Xie,Li Qian,Hongbo Shi,Beibei Kong,Jiying Hu. Designing Framework for Precise Service of Scholarly Big Data[J]. 数据分析与知识发现, 2019, 3(1): 63-71.
[8] Datian Bi,Fu Wang,Pengcheng Xu. Analyzing Mobile Library Users and Recommending Services with VSM[J]. 数据分析与知识发现, 2018, 2(9): 100-108.
[9] Hong Zong,Chunxiang Xue,Fen Chen. Growth Pattern of Online News Comments[J]. 数据分析与知识发现, 2018, 2(9): 50-58.
[10] Xiaodong Qian,Min Li. Identifying E-commerce User Types Based on Complex Network Overlapping Community[J]. 数据分析与知识发现, 2018, 2(6): 79-91.
[11] Wei Lu,Mengqi Luo,Heng Ding,Xin Li. Image Annotation Tags by Deep Learning and Real Users: A Comparative Study[J]. 数据分析与知识发现, 2018, 2(5): 1-10.
[12] Tingting Zhang,Yuxiang Zhao,Qinghua Zhu. Mining User Preferences in Crowdsourcing Community with Sensitivity Analysis[J]. 数据分析与知识发现, 2018, 2(5): 23-31.
[13] Lingfeng Hua,Gaoming Yang,Xiujun Wang. Recommending Diversified News Based on User’s Locations[J]. 数据分析与知识发现, 2018, 2(5): 94-104.
[14] Tingting Wang,Kaiping Wang,Guijie Qi. Analyzing Implemented Ideas from Open Innovation Platform with Sentiment Analysis: Case Study of Salesforce[J]. 数据分析与知识发现, 2018, 2(4): 38-47.
[15] Feifei Wang,Shengtai Zhang. Analyzing Information Behaviors of Mobile Social Network Users[J]. 数据分析与知识发现, 2018, 2(4): 99-109.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938   E-mail:jishu@mail.las.ac.cn