Please wait a minute...
New Technology of Library and Information Service  2008, Vol. 24 Issue (8): 42-47    DOI: 10.11925/infotech.1003-3513.2008.08.07
Current Issue | Archive | Adv Search |
A Personalized Web Pages Recommendation Model Based on Sequential Patterns
Yi Ming
(Department of Information Management, Huazhong Normal University, Wuhan  430079,China)
Download: PDF(554 KB)   HTML  
Export: BibTeX | EndNote (RIS)      
Abstract  

This paper proposes a personalized Web pages recommendation model based on sequential patterns. Firstly, this model extracts the Web transaction set by Web usage preparation. Secondly, it applies a sequential patterns algorithm to discover frequent (contiguous) sequences. Finally, the model utilizes frequent (contiguous) sequences tree to generate user interest view and provides personalized recommendation set.

Key wordsSequential patterns      Personalized recommendation      Interest view     
Received: 24 September 2007      Published: 25 August 2008
: 

TP393

 
Corresponding Authors: Yi Ming     E-mail: yiming0415@sina.com
About author:: Yi Ming

Cite this article:

Yi Ming. A Personalized Web Pages Recommendation Model Based on Sequential Patterns. New Technology of Library and Information Service, 2008, 24(8): 42-47.

URL:

http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/10.11925/infotech.1003-3513.2008.08.07     OR     http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/Y2008/V24/I8/42

[1] 谢中.基于Web数据挖掘商务网站推荐系统的研究[D].重庆:西南师范大学,2002.
[2] 童恒庆,梅清.Web日志挖掘数据预处理研究[J].现代计算机,2004(3):6-9.
[3] Colley R. Web Usage Mining:Discovery and Application of Interesting Patterns from Web Data[D]. Minneapolis:University of Minnesota, 2000.
[4] Berendt B, Spiliopoulou M. Analysis of Navigation Behavior in Web Sites Integrating Multiple Information Systems[J]. The VLDB Journal, 2000(9):56-75.
[5] Tan P N,  Kumar V. Discovery of Web Robot Sessions Based on their Navigational Patterns[J]. Data Mining and Knowledge Discovery, 2002 (1):9-35.
[6] Berendt B, Mobasher B,  Spiliopoulou M, et al.Measuring the accuracy of sessionizers for web usage analysis[C]. In:Proceeding of  the First SIAM International Conference on Data Mining. Chicago, 2001:7-14.
[7] Catledge L, Pitkow J. Characterizing Browsing Behaviors on the World Wide Web[J]. Computer Networks and ISDN Systems, 1995(6):1065-1073.
[8] Cooley R,  Mobasher B,  Srivastava J. Data preparation for mining World Wide Web browsing patterns[J]. Journal of Knowledge and Information Systems, 1999(1):5-32.
[9] 邵峰晶,于忠清.数据挖掘——原理与算法[M].北京:中国水利水电出版社,2003:277-288.
[10] Mobasher B. Web Usage Mining and Personalization. In:The Practical Handbook of Internet Computing[M]. Munindar P. Singh (ed.), Boca Raton:CRC Press, 2005:16-28.

[1] Yiwen Zhang,Chenkun Zhang,Anju Yang,Chengrui Ji,Lihua Yue. A Conditional Walk Quadripartite Graph Based Personalized Recommendation Algorithm[J]. 数据分析与知识发现, 2019, 3(4): 117-125.
[2] Jiaxin Ye,Huixiang Xiong. Recommending Personalized Contents from Cross-Domain Resources Based on Tags[J]. 数据分析与知识发现, 2019, 3(2): 21-32.
[3] Jie Li,Fang Yang,Chenxi Xu. A Personalized Recommendation Algorithm with Temporal Dynamics and Sequential Patterns[J]. 数据分析与知识发现, 2018, 2(7): 72-80.
[4] Meimei Chen,Kangjie Xue. Personalized Recommendation Algorithm of Multi-faceted Trust Tensor Based on Tag Clustering[J]. 数据分析与知识发现, 2017, 1(5): 94-101.
[5] Meimei Chen, Kangjie Xue. Personalized Recommendation Algorithm Based on Modified Tensor Decomposition Model[J]. 数据分析与知识发现, 2017, 1(3): 38-45.
[6] Tan Xueqing,Zhang Lei,Huang Cuicui,Luo Lin. A Collaborative Filtering and Recommendation Algorithm Using Trust of Domain-Experts and Similarity[J]. 现代图书情报技术, 2016, 32(7-8): 101-109.
[7] Xie Qi,Cui Mengtian. Group Similarity Based Hybrid Web Service Recommendation Algorithm[J]. 现代图书情报技术, 2016, 32(6): 80-87.
[8] Zhu Ting, Qin Chunxiu, Li Zuhai. Research on Collaborative Filtering Personalized Recommendation Method Based on User Classification[J]. 现代图书情报技术, 2015, 31(6): 13-19.
[9] Gao Huming, Zhao Fengyue. A Hybrid Recommendation Method Combining Collaborative Filtering and Content Filtering[J]. 现代图书情报技术, 2015, 31(6): 20-26.
[10] Lu Xiaoming. Research on a Lightweight Academic Library Context-aware Recommendation Service Platform Based on GimbalTM[J]. 现代图书情报技术, 2015, 31(3): 101-107.
[11] Song Meiqing. Research on Multi-granularity Users' Preference Mining Based on Collaborative Filtering Personalized Recommendation[J]. 现代图书情报技术, 2015, 31(12): 28-33.
[12] Wang Weijun, Song Meiqing. A Collaborative Filtering Personalized Recommendation Algorithm Through Directionally Mining Users’ Preferences[J]. 现代图书情报技术, 2014, 30(6): 25-32.
[13] Zhao Yan, Wang Yamin. Model for Personalized Recommendation Based on Social Tagging in P2P Environment[J]. 现代图书情报技术, 2014, 30(5): 50-57.
[14] Tan Xueqing, Huang Cuicui, Luo Lin. A Review of Research on Trust Recommendation in Social Networks[J]. 现代图书情报技术, 2014, 30(11): 10-16.
[15] Ai Danxiang, Zuo Hui, Yang Jun. Research on Three-dimensional Personalized Recommendation Approach for C2C E-commerce Platform[J]. 现代图书情报技术, 2013, 29(1): 36-42.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938   E-mail:jishu@mail.las.ac.cn