Please wait a minute...
New Technology of Library and Information Service  2008, Vol. 24 Issue (8): 48-52    DOI: 10.11925/infotech.1003-3513.2008.08.08
Current Issue | Archive | Adv Search |
A Semantic and Personalized Query Expansion Method Based on Users’Interests
Zhang Kezhuang1  Liu YouhuaHuang FangLi Yin 2
1(Department of Information Management,Nanjing University, Nanjing 210093, China)
2 (School of Management and Engineering,Nanjing University, Nanjing 210093, China)  
Download: PDF(505 KB)   HTML  
Export: BibTeX | EndNote (RIS)      

 This paper proposes a new query expansion method which combines user modeling research and the research of query expansion based on Ontology,realizing the personalized semantic query expansion. And it divides the process of personalized semantic query expansion into two stage ——the mapping  from keywords to the concepts included in the user modeling and the semantic extension at the level of Ontology, and the algorithm of each stage is gaven in this papar. The experiment indicates that this method can enhance the accuracy ratio and the recall of the information retrieval, and meet personalized needs in the certain extent.

Key wordsQuery expansion      Ontology      Persionalization      User interest     
Received: 28 May 2008      Published: 25 August 2008


Corresponding Authors: Zhang Kezhuang     E-mail:
About author:: Zhang Kezhuang,Liu Youhua,Huang Fang,Li Yin

Cite this article:

Zhang Kezhuang,Liu Youhua,Huang Fang,Li Yin . A Semantic and Personalized Query Expansion Method Based on Users’Interests. New Technology of Library and Information Service, 2008, 24(8): 48-52.

URL:     OR

[1] Bhogal J,MacFarlane A,Smith P. A Review of Ontology Based Query Expansion[J].Information  Processing & Management,2007,7(43):866-869. 
[2] Lexical Database Homepage About WordNet[EB/OL].[2008-03-06].
[3] Suomela S,Kekalainen J. Ontology as a Search-Tool:A Study of Real Users’Query Formulation With and Without Conceptual Support[J]. ECIR,2005,3408:315-329.
[4] Furnas G W,Landauer T K,Gomez L M. The Vocabulary Problem in Human-system Communication[J]. Communication of ACM,1987,30(11):964-971.
[5] Ronda C, Angehm A, Nabeth T, et al. Using Conversational Agents to Support the Adoption of Knowledge Sharing Practices[J]. Interacting with Computers,2003,15(1):57-89.
[6] 徐振宁. 基于本体的Web数据语义信息的表示与处理方法[D].长沙:国防科技大学,2002.
[7] 李勇. 智能检索中基于本体的个性化用户建模技术及应用[D].长沙:国防科技大学,2002.
[8] Pretschner A.Ontology Based Personalized Search[D].Lawrence,KS:The University of Kansas,1999.
[9] 关庆珍,周竹荣. 基于Ontology的用户模型研究[J]. 计算机应用,2007,27(10):15-19.
[10] 梅翔. 语义检索中若干关键问题研究[D].北京:北京邮电大学,2007.
[11] Anyanwu K,Sheth A. ρ –Queries:Enabling Querying for Semantic Associations on the Semantic Web[C].In:Proceeding of the WWW2003,New York:ACM Press, 2003:690-699.
[12] Khan L,  McLeod D, Hovy E. Retrieval Effectiveness of an Ontology-based Model for Information Selection[J]. The VLDB Journal, 2004,13(1):71-85.
[13] LIBSVM[CP].[2008-02-06].
[14] 顾华建. 基于本体的语义查询技术研究[D].南京:河海大学,2007.

[1] Zhu Fu,Yuefen Wang,Xuhui Ding. Semantic Representation of Design Process Knowledge Reuse[J]. 数据分析与知识发现, 2019, 3(6): 21-29.
[2] Guangshang Gao. A Survey of User Profiles Methods[J]. 数据分析与知识发现, 2019, 3(3): 25-35.
[3] Ying Wang,Li Qian,Jing Xie,Zhijun Chang,Beibei Kong. Building Knowledge Graph with Sci-Tech Big Data[J]. 数据分析与知识发现, 2019, 3(1): 15-26.
[4] Youshi He,Shufang He. Sentiment Mining of Online Product Reviews Based on Domain Ontology[J]. 数据分析与知识发现, 2018, 2(8): 60-68.
[5] Huihui Tang,Hao Wang,Zixuan Zhang,Xueying Wang. Extracting Names of Historical Events Based on Chinese Character Tags[J]. 数据分析与知识发现, 2018, 2(7): 89-100.
[6] Beibei Pang,Juanqiong Gou,Wenxin Mu. Extracting Topics and Their Relationship from College Student Mentoring[J]. 数据分析与知识发现, 2018, 2(6): 92-101.
[7] Shengchun Ding,Menglu Liu,Zhu Fu. Unified Multidimensional Model Based on Knowledge Flow in Conceptual Design[J]. 数据分析与知识发现, 2018, 2(2): 11-19.
[8] Haili Tu,Xiaobo Tang. Building Product Recommendation Model Based on Tags[J]. 数据分析与知识发现, 2017, 1(9): 28-39.
[9] Erjing Chen,Enbo Jiang. Review of Studies on Text Similarity Measures[J]. 数据分析与知识发现, 2017, 1(6): 1-11.
[10] Rujiang Bai,Fuhai Leng,Junhua Liao. An Improved Cosine Text Similarity Computing Method Based on Semantic Chunk Feature[J]. 数据分析与知识发现, 2017, 1(6): 56-64.
[11] Dan Wu,Chang Liu,Yi Li. Changing Sentiments of Pedestrian Navigation System Users[J]. 数据分析与知识发现, 2017, 1(5): 42-51.
[12] Jin Zeng,Wei Lu,Heng Ding,Haihua Chen. Modeling User’s Interests Based on Image Semantics[J]. 数据分析与知识发现, 2017, 1(4): 76-83.
[13] Mengyao Xie,Xuwei Pan. Constructing Dynamic Social Tag Cloud for User Interests[J]. 数据分析与知识发现, 2017, 1(2): 35-40.
[14] Liu Jian,Bi Qiang,Liu Qingxu,Wang Fu. New Content Recommendation Service of Digital Literature[J]. 现代图书情报技术, 2016, 32(9): 70-77.
[15] Ding Heng,Lu Wei. Building Standard Literature Knowledge Service System[J]. 现代图书情报技术, 2016, 32(7-8): 120-128.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938