Please wait a minute...
New Technology of Library and Information Service  2009, Vol. 3 Issue (1): 80-85    DOI: 10.11925/infotech.1003-3513.2009.01.12
Current Issue | Archive | Adv Search |
Design of an E-commerce Recommender System Based on Hybrid Algorithm
Wang Hongyu  Zhao Ying  Dang Yuewu
(School of Public Administration, Sichuan University, Chengdu 610064,China)
Download: PDF(644 KB)   HTML  
Export: BibTeX | EndNote (RIS)      
Abstract  

In view of the current E-commerce Recommender System can not be good for unregistered users, the paper set two different sets of data collection program according to the characteristics of unregistered users and registered users, in order to enhance the friendly of website and the accuracy of the data. Because the decision tree algorithm and bayesian network algorithms both have advantages and disadvantages, the paper uses a combination of two algorithms, and introduces the content-based algorithm to research the attribute of goods to improve the accuracy of the recommendation. The experiments prove that these methods can provide good service for unregistered users and the recommendation based on the hybrid algorithm is superior to single algorithm.

Key wordsHybrid algorithm      Recommender system      Decision tree      Bayesian networks     
Received: 09 October 2008      Published: 25 January 2009
: 

TP391

 
Corresponding Authors: Zhao Ying     E-mail: zhaoying@email.scu.edu.cn
About author:: Wang Hongyu,Zhao Ying,Dang Yuewu

Cite this article:

Wang Hongyu,Zhao Ying,Dang Yuewu. Design of an E-commerce Recommender System Based on Hybrid Algorithm. New Technology of Library and Information Service, 2009, 3(1): 80-85.

URL:

http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/10.11925/infotech.1003-3513.2009.01.12     OR     http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/Y2009/V3/I1/80

[1] 王宏宇.商务推荐系统的设计研究[D].安徽:中国科学技术大学博士论文,2007.
[2] Jeffrey L Whitten, Lonnie D Bentley, et al. Systems Analysis and Design Methods[M]. 5th ed., McGraw-Hill,2001.
[3] Lieberman H. Letizia: An Agent That Assists Web Browsing[C]. In: Burke,R.,ed.  Proceedings of the International Joint Conference on Artificial Intelligence, Menlo Park, CA:AAAI Press,1995:924-929.
[4] 易明.基于序列模式的个性化Web页面推荐模型[J].现代图书情报技术,2008(8):42-47.
[5] Nils J. Nilsson.Artificial Intelligence: A New Synthesis[M]. Morgan Kaufmann Publishers, Inc,1998.
[6] 田子德.贝叶斯网络在自适应超媒体系统中应用研究[J]. 情报科学,2006, 24(7):1049-1052.
[7] 使用C#中Socket实现的一个多线程的网络爬行程序.[2008-11-18].http://www.codesoso.com/code/multi-thread-simple-crawler-socket.aspx.
[8] 王大玲,鲍玉斌,于戈.支持个性化推荐的用户分类规则挖掘的研究[J]. 小型微型计算机系统,2004(11):1948-1951.
[9] 冀俊忠,沙志强,刘椿年.贝叶斯网模型在推荐系统中的应用研究[J]. 计算机工程,2005(13):32-34.

[1] Xiufeng Cheng,Xinyi Zhang,Ning Wang. Identifying Trending Topics in Q&A Community with CART Decision Tree[J]. 数据分析与知识发现, 2018, 2(12): 52-59.
[2] Xinyue Fan,Lei Cui. Predicting Antineoplastic Drug Targets Based on Network Properties[J]. 数据分析与知识发现, 2018, 2(12): 98-108.
[3] Bincan Yin,Shichao Xin,Han Zhang,Yuhong Zhao. Building Asian Tumor-patients Prognostic Model with Bayesian Network and SEER Database——Case Study of Non-Small Cell Lung Cancer[J]. 数据分析与知识发现, 2017, 1(2): 41-46.
[4] Yang Yang,Lin Hui,Hu Guangwei. Detecting Investment Risks of Photovoltaic Projects with Big Data: Case Study of Solarbao.com[J]. 现代图书情报技术, 2016, 32(11): 11-19.
[5] Zhao Jingxian. Detect of Internet Fake Public Opinion Based on Decision Tree[J]. 现代图书情报技术, 2015, 31(6): 78-84.
[6] Tang Xiangbin, Lu Wei, Zhang Xiaojuan, Huang Shihao. Feature Analysis and Automatic Identification of Query Specificity[J]. 现代图书情报技术, 2015, 31(2): 15-23.
[7] Liu Dan. Personalized Book Recommender Service Deployment Using Apache Mahout[J]. 现代图书情报技术, 2015, 31(10): 102-108.
[8] Tan Xueqing, He Shan. Research Review on Music Personalized Recommendation System[J]. 现代图书情报技术, 2014, 30(9): 22-32.
[9] Xue Fuliang, Zhang Huiying. A Research of Collaborative Filtering Recommender Method Based on SOM and RBFN Filling Missing Values[J]. 现代图书情报技术, 2014, 30(7): 56-63.
[10] Jiang Shuhao, Xue Fuliang. An Improved Content-based Recommendation Method Through Collaborative Predictions and Fuzzy Similarity Measures[J]. 现代图书情报技术, 2014, 30(2): 41-47.
[11] Hu Xinming, Luo Jianjun, Xia Huosong. Research on Interactive Recommender System Based on Commodity Domain Knowledge[J]. 现代图书情报技术, 2014, 30(10): 56-62.
[12] Xu Xiaojuan,Zhao Yuxiang,Zhu Qinghua. Explore User’s Behavior of Academic Blog Based on EDTM:Take Blog.Sciencenet as an Example[J]. 现代图书情报技术, 2014, 30(1): 79-86.
[13] Zhang Huiying, Xue Fuliang. An Improved Collaborative Filtering Recommendation Algorithm Based on Vague Sets Theory[J]. 现代图书情报技术, 2012, 28(3): 35-39.
[14] Zhang Huiying, Xue Fuliang. An Integrated Recommender Method Based on CLV and Collaborative Filtering[J]. 现代图书情报技术, 2012, 28(1): 46-52.
[15] Li Cong. Review of Scalability Problem in E-commerce Collaborative Filtering[J]. 现代图书情报技术, 2010, 26(11): 37-41.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938   E-mail:jishu@mail.las.ac.cn