Please wait a minute...
New Technology of Library and Information Service  2009, Vol. 3 Issue (2): 23-28    DOI: 10.11925/infotech.1003-3513.2009.02.04
article Current Issue | Archive | Adv Search |
Ontology-based Patent Abstracts' Knowledge Extraction
Jiang Caihong  Qiao Xiaodong  Zhu Lijun
(Institute of Scientific and Technical Information of China, Beijing 100038, China)
Download: PDF(831 KB)   HTML  
Export: BibTeX | EndNote (RIS)      
Abstract  

This paper analyzes Chinese patent abstract about alternative energy vehicles by way of knowledge engineering method, and puts forward an Ontology-based knowledge extraction model for Chinese patent abstracts. Main stages in building the model include: to construct a corresponding Ontology, to collect a related word list, to write corresponding rules. These rules are utilized to extract underlying knowledge in patent abstracts. The result aids in the automatic construction of patent knowledge base. This paper is an attempt on how to organize unstructed information and on how to automatically construct a knowledge base, and verifies the feasibility of Ontology-based patent abstracts' knowledge extraction.

Key wordsKnowledge extraction      Ontology      Patent abstract      Knowledge base     
Received: 24 November 2008      Published: 25 February 2009
: 

 

 
  TP391

 
Corresponding Authors: Jiang Caihong     E-mail: caihong_0725@163.com
About author:: Jiang Caihong,Qiao Xiaodong ,Zhu Lijun

Cite this article:

Jiang Caihong,Qiao Xiaodong ,Zhu Lijun. Ontology-based Patent Abstracts' Knowledge Extraction. New Technology of Library and Information Service, 2009, 3(2): 23-28.

URL:

http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/10.11925/infotech.1003-3513.2009.02.04     OR     http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/Y2009/V3/I2/23

[1] 李保力,陈玉忠,俞士汶.信息抽取研究综述[J].计算机工程与应用,2003,39(10):1-5.
[2] Vintar ,Buitelaar P,Ripplinger B.et al. An Efficient and Flexible Format for Linguistic and Semantic Annotation: Proceedings of LREC[J].Online Review, 2003,13(6):466-469.
[3] ArtEquAkt from The University of Southampton [EB/OL].[2008-08-30]. http://www.aktors.org/technologies/artequakt/.
[4] Advanced Knowledge Technologies [EB/OL].[2008-08-30]. http://www.aktors.org/akt/.
[5] Semantic Knowledge Technologies [EB/OL]. [2008-08-30]. http://www.sekt-project.com/.
[6] Intelligent Search Agent for Information Extraction and Synthesis on the Web [EB/OL].[2008-08-30].http://www.ntu.edu.sg/sci/research/knowledge.html
[7] 夏天,樊孝忠,刘 林. 利用JNI实现ICTCLAS系统的Java调用[J].计算机应用,2004(24):177-182.
[8] What is Protégé [EB/OL].[2008-06-10]. http://protege.stanford.edu/overview/index.html
[9] GATE: An Application Developer’s Guide[EB/OL].[2008-06-30].http://www.dcs.shef.ac.uk/~valyt,diana,kalian,Hamish.

[1] Zhu Fu,Yuefen Wang,Xuhui Ding. Semantic Representation of Design Process Knowledge Reuse[J]. 数据分析与知识发现, 2019, 3(6): 21-29.
[2] Ruihua Qi,Junyi Zhou,Xu Guo,Caihong Liu. Extracting Book Review Topics with Knowledge Base[J]. 数据分析与知识发现, 2019, 3(6): 83-91.
[3] Hongxia Xu,Chunwang Li. Review of Knowledge Extraction of Scientific Literature[J]. 数据分析与知识发现, 2019, 3(3): 14-24.
[4] Guangshang Gao. A Survey of User Profiles Methods[J]. 数据分析与知识发现, 2019, 3(3): 25-35.
[5] Ying Wang,Li Qian,Jing Xie,Zhijun Chang,Beibei Kong. Building Knowledge Graph with Sci-Tech Big Data[J]. 数据分析与知识发现, 2019, 3(1): 15-26.
[6] Youshi He,Shufang He. Sentiment Mining of Online Product Reviews Based on Domain Ontology[J]. 数据分析与知识发现, 2018, 2(8): 60-68.
[7] Huihui Tang,Hao Wang,Zixuan Zhang,Xueying Wang. Extracting Names of Historical Events Based on Chinese Character Tags[J]. 数据分析与知识发现, 2018, 2(7): 89-100.
[8] Beibei Pang,Juanqiong Gou,Wenxin Mu. Extracting Topics and Their Relationship from College Student Mentoring[J]. 数据分析与知识发现, 2018, 2(6): 92-101.
[9] Shengchun Ding,Menglu Liu,Zhu Fu. Unified Multidimensional Model Based on Knowledge Flow in Conceptual Design[J]. 数据分析与知识发现, 2018, 2(2): 11-19.
[10] Haili Tu,Xiaobo Tang. Building Product Recommendation Model Based on Tags[J]. 数据分析与知识发现, 2017, 1(9): 28-39.
[11] Erjing Chen,Enbo Jiang. Review of Studies on Text Similarity Measures[J]. 数据分析与知识发现, 2017, 1(6): 1-11.
[12] Rujiang Bai,Fuhai Leng,Junhua Liao. An Improved Cosine Text Similarity Computing Method Based on Semantic Chunk Feature[J]. 数据分析与知识发现, 2017, 1(6): 56-64.
[13] Dan Wu,Chang Liu,Yi Li. Changing Sentiments of Pedestrian Navigation System Users[J]. 数据分析与知识发现, 2017, 1(5): 42-51.
[14] Guo Chen,Lu Xiao. Linking Knowledge Elements from Online Community[J]. 数据分析与知识发现, 2017, 1(11): 75-83.
[15] Jianhua Liu,Ying Wang,Zhixiong Zhang,Chuanxi Li. Extracting Semantic Knowledge from Plant Species Diversity Collections[J]. 数据分析与知识发现, 2017, 1(1): 37-46.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938   E-mail:jishu@mail.las.ac.cn