Please wait a minute...
New Technology of Library and Information Service  2009, Vol. 25 Issue (4): 79-81    DOI: 10.11925/infotech.1003-3513.2009.04.15
Current Issue | Archive | Adv Search |
Binarization for Document Image Based on Multi-scale Conditional Random Fields
Liu Kun  Lv Xueqiang  Wang Tao  Shi Shuicai
(Chinese Information Processing Research Center, Beijing Information Science &Technology University, Beijing 100101,China)
(Beijing TRS Information Technology Co.Ltd., Beijing 100101, China)
Download: PDF(382 KB)   HTML  
Export: BibTeX | EndNote (RIS)      
Abstract  

This paper proposes a new algorithm based on multi-scale conditional random fields. This algorithm treats the binarization as a tagging process, using mCRF to label every pixel in the image, so as to realize the binarization of the full image. MCRF of discriminate model can accommodate any of the non-independent features, which makes full use of information in the image. From the result can see this algorithm is better than common threshold method in effect.

Key wordsDocument image      Binarization      mCRF      Feature function     
Received: 21 November 2008      Published: 25 April 2009
: 

TP 391

 
Corresponding Authors: Liu Kun     E-mail: liukun2007@yahoo.com.cn
About author:: Liu Kun,Lv Xueqiang,Wang Tao,Shi Shuicai

Cite this article:

Liu Kun,Lv Xueqiang,Wang Tao,Shi Shuicai. Binarization for Document Image Based on Multi-scale Conditional Random Fields. New Technology of Library and Information Service, 2009, 25(4): 79-81.

URL:

http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/10.11925/infotech.1003-3513.2009.04.15     OR     http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/Y2009/V25/I4/79

[1] 陈丹,张蜂,贺贵明. 一种改进的文本图像二值化算法 [J]. 计算机工程, 2003, 29(13): 85-86.
[2] He X, Zemel R, Carreira-perpinan M. Multiscale Conditional Random Fields for Image Labeling [C]. In: IEEE Conference. Computer Vision and Pattern Recognition, 2004: 695-702.
[3] Derin H, Elliott H. Modeling and Segmentation of Noisy and Textured Images Using Gibbs Random Fields [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1987, 9:39-55.
[4] Lafferty J, McCallum A, Pereira F. Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data [C]. In: ICML, 2001: 282-289.
[5] Hinton G E. Training Products of Experts by Minimizing Contrastive Divergence [J]. Neural Comp, 2002, 14(8): 1771-1800.

[1] Wang Hao, Zou Jieli, Deng Sanhong. Model Construction and Experiment Analysis of Automatic Indexing for Chinese Books[J]. 现代图书情报技术, 2013, 29(7/8): 55-62.
[2] Su Dongchu,Chen Heping,Sun Ping. A Fast Binarization Method Based on High-Low Pass Filter for Document Image
——The Using of Digital Image Process Technics in Digital Library
[J]. 现代图书情报技术, 2005, 21(3): 43-44.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938   E-mail:jishu@mail.las.ac.cn