Please wait a minute...
New Technology of Library and Information Service  2009, Vol. Issue (9): 40-44    DOI: 10.11925/infotech.1003-3513.2009.09.07
article Current Issue | Archive | Adv Search |
An English Tag Clustering Method Based on the Porter Stemming Algorithm
Dou Yongxiang  Su Shanjia  Zhao Pengwei
(School of Economics and Management,Xidian University,  Xi’an 710071, China)
Download: PDF (464 KB)  
Export: BibTeX | EndNote (RIS)      
Abstract  

The tags added by users are free rein and uncontrolled in folksonomy systems,so the porter stemming algorithm is introduced firstly in this paper to extract the roots of English tags. Then the method of clustering English tags is brought forward, which chooses the precision following the user’s choice. Finally, making use of the tag cloud, simulation experiment is conducted and proves that this algorithm can make the English tags clustered according to the user’s requirement and describe the resource better.

Key wordsFolksonomy      Tag      Cluster     
Received: 22 June 2009      Published: 25 September 2009
ZTFLH: 

G250.7

 
Corresponding Authors: 苏山佳     E-mail: sushanjia119@yeah.net
About author:: Dou Yongxiang,Su Shanjia,Zhao Pengwei

Cite this article:

Dou Yongxiang,Su Shanjia,Zhao Pengwei. An English Tag Clustering Method Based on the Porter Stemming Algorithm. New Technology of Library and Information Service, 2009, (9): 40-44.

URL:

http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/10.11925/infotech.1003-3513.2009.09.07     OR     http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/Y2009/V/I9/40

[1] 栾芳芳,陈雪强. Web2.0时代的Folksonomy研究[J]. 图书情报论坛,2008(2):54-56.
[2 ]The Porter Stemming Algorithm[EB/OL].[2009-02-10].http://tartarus.org/~martin/PorterStemmer/def.txt.
[3 ]Mathes A. Folksonomies-cooperative Classification and Communication Through Shared Metadata[EB/OL]. [2007-11-10].http://www.adammathes.com-/academic/computer-mediated-communication/folksonomies.html.
[4] 黄建年,侯汉清. Tag分类基本问题探究[J].情报理论与实践,2008,31(3):461-465.
[5] Abel F, Henze N, Krause D. Exploiting Additional Context for Graph-based Tag Recommendations in Folksonomy Systems[C]. In: Proceedings of IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology, Singapore. 2008:148-154.
[6] Abbasi R, Staab S, Cimiano P. Organizing Resource on Tagging Systems Using T-ORG[C].In: Proceedings of the International Workshop on Bridging the Gap Between Semantic Web and Web2.0, Innsbruck, Austria. 2007:97-110.
[7] De Meo P, Quattrone G, Ursino D. Exploitation of Semantic Relationships and Hierarchical Data Structures to Support a User in His Annotation and Browsing Activities in Folksonomy[J]. Information System,2009,34(6):511-535.
[8] 曹高辉,焦玉英,成全. 基于凝聚式层次聚类算法的标签聚类研究[J]. 现代图书情报技术,2008(4):23-27.
[9] 王翠英. 标签的聚类分析研究[J]. 现代图书情报技术,2008(5):67-71.
[10] Tags Used by the Clients[DB/OL].[2009-01-03]. http://delicious.com.

[1] Xi Yunjiang, Du Diedie, Liao Xiao, Zhang Xuehong. Analyzing & Clustering Enterprise Microblog Users with Supernetwork[J]. 数据分析与知识发现, 2020, 4(8): 107-118.
[2] Ye Jiaxin,Xiong Huixiang,Tong Zhaoli,Meng Qiuqing. Collaborative Tagging for Doctors in Online Medical Community[J]. 数据分析与知识发现, 2020, 4(6): 118-128.
[3] Yang Xu,Qian Xiaodong. Synchronous Clustering Algorithm for Social Networks Based on Improved Vicsek Model[J]. 数据分析与知识发现, 2020, 4(4): 119-128.
[4] Xiong Huixiang,Li Xiaomin,Li Yueyan. Group Recommendation Based on Attribute Mining of Book Reviews[J]. 数据分析与知识发现, 2020, 4(2/3): 214-222.
[5] Bocheng Li,Yunqiu Zhang,Kaixi Yang. Extracting Emotion Tags from Comments of Microblog Commodities[J]. 数据分析与知识发现, 2019, 3(9): 115-123.
[6] Huaming Zhao,Li Yu,Qiang Zhou. Determining Best Text Clustering Number with Mean Shift Algorithm[J]. 数据分析与知识发现, 2019, 3(9): 27-35.
[7] Shan Li,Yehui Yao,Hao Li,Jie Liu,Karmapemo. ISA Biclustering Algorithm for Group Recommendation[J]. 数据分析与知识发现, 2019, 3(8): 77-87.
[8] Lixin Xia,Jieyan Zeng,Chongwu Bi,Guanghui Ye. Identifying Hierarchy Evolution of User Interests with LDA Topic Model[J]. 数据分析与知识发现, 2019, 3(7): 1-13.
[9] Ke Li,Yuya Sasaki. Analyzing Sentiment Distribution with Spatial-textual Data of Multi-dimensional Clustering[J]. 数据分析与知识发现, 2019, 3(7): 14-22.
[10] Cheng Zhou,Hongqin Wei. Evaluating and Classifying Patent Values Based on Self-Organizing Maps and Support Vector Machine[J]. 数据分析与知识发现, 2019, 3(5): 117-124.
[11] Quan Lu,Anqi Zhu,Jiyue Zhang,Jing Chen. Research on User Information Requirement in Chinese Network Health Community: Taking Tumor-forum Data of Qiuyi as an Example[J]. 数据分析与知识发现, 2019, 3(4): 22-32.
[12] Jiang Wu,Yinghui Zhao,Jiahui Gao. Research on Weibo Opinion Leaders Identification and Analysis in Medical Public Opinion Incidents[J]. 数据分析与知识发现, 2019, 3(4): 53-62.
[13] Lianjie Xiao,Mengrui Gao,Xinning Su. An Under-sampling Ensemble Classification Algorithm Based on Fuzzy C-Means Clustering for Imbalanced Data[J]. 数据分析与知识发现, 2019, 3(4): 90-96.
[14] Yue Yuan,Dongbo Wang,Shuiqing Huang,Bin Li. The Comparative Study of Different Tagging Sets on Entity Extraction of Classical Books[J]. 数据分析与知识发现, 2019, 3(3): 57-65.
[15] Jiaxin Ye,Huixiang Xiong. Recommending Personalized Contents from Cross-Domain Resources Based on Tags[J]. 数据分析与知识发现, 2019, 3(2): 21-32.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938   E-mail:jishu@mail.las.ac.cn