Please wait a minute...
New Technology of Library and Information Service  2009, Vol. 25 Issue (11): 10-16    DOI: 10.11925/infotech.1003-3513.2009.11.03
article Current Issue | Archive | Adv Search |
Relation Identification Between Conceptual Terms for Automatic Construction of Lexical Knowledge Database
Zhang Wei   Yu Yang   You Hongliang
(China Defense Science and Technology Information Center, Beijing 100142, China)
Download: PDF (499 KB)  
Export: BibTeX | EndNote (RIS)      

This paper proposes an approach to identify term relations for automatic construction of conceptual lexical database, and focuses on discovering statistical and morphological features of hypernym/hyponym relations between conceptual words. Then it puts forward a feature-mixed identification model. The result shows that the model is effective on identifying synonym, hypernym/hyponym relations.

Key wordsHypernym/hyponym relation      Statistical feature      Morphological rule      Automatic construction of knowledge database     
Received: 22 September 2009      Published: 25 November 2009


Corresponding Authors: Zhang Wei     E-mail:
About author:: Zhang Wei,Yu Yang,You Hongliang

Cite this article:

Zhang Wei,Yu Yang,You Hongliang. Relation Identification Between Conceptual Terms for Automatic Construction of Lexical Knowledge Database. New Technology of Library and Information Service, 2009, 25(11): 10-16.

URL:     OR

[1] Lenat D B. CYC: A Large-scale Investment in Knowledge Infrastructure [J]. Communications of the ACM, 1995,38(11):33-38.
[2] WordNet[EB/OL]. [2009-08-17].
[3] 知网[EB/OL]. [2009-08-17].
[4] Riloff E,Shepherd J. A Corpus-based Approach for Building Semantic Lexicons[C]. In:Proceedings of  the 2nd Conference on Empirical Methods in Natural Language Processing. 1997.
[5] Roark B,Charniak E. Noun-phrase Co-occurrence Statistics for Semi-automatic Semantic Lexicon Construction[C]. In:Proceedings of the 17th International Conference on Computational Linguistics,Montreal, Quebec, Canada. 1998:1110-1116.
[6] Frantzi K, Ananiadou S, Mima H. Automatic Recognition of Multi-word Terms: The C-value/NC-value Method Export [J]. International Journal on Digital Libraries, 2000, 3(2):115-130.
[7] Etzioni O, Cafarella M, Downey D, et al. Unsupervised Named-Entity Extraction from the Web: An Experimental Study[J]. Artificial Intelligence, 2005,165(1):91-134.
[8]Pasc M. Finding Instance Names and Alternative Glosses on the Web: WordNet Reloaded[C]. In: Proceedings of CICLing. 2005: 280-292.
[9] Hearst M A. Automatic Acquisition of Hyponyms from Large Text Corpora[C]. In: Proceedings of the 14th Conference on Computational Linguistics. New York: Association for Computational Linguistics, 1992(2): 539-545.
[10] Mann G S. Fine-Grained Proper Noun Ontologies for Question Answering[C].In:Proceedings of International Conference on Computational Linguistics. 2002:1-7.
[11] Snow R, Jurafsky D, Ng A Y. Learning Syntactic Patterns for Automatic Hypernym Discovery[C]. In:Proceedings of Advances in Neural Information Processing Systems. 2005:1297-1304.
[12] Berland M, Charniak E. Finding Parts in Very Large Corpora[C]. In: Proceedings of the 37th Annual Meeting of the Association for Computational Linguistics on Computational Linguistics,College Park, Maryland. 1999:57-64.  
 [13] Girju R, Badulescu A, Moldovan D. Learning Semantic Constraints for the Automatic Discovery of Part-Whole Relations[C]. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology,Edmonton, Canada. 2003: 1-8.  
[14] Widdows D, Dorow B. A Graph Model for Unsupervised Lexical Acquisition[C]. In: Proceedings of the 19th International Conference on Computational Linguistics.2002:1093-1099.
[15] Kozareva Z, Riloff E, Hovy E. Semantic Class Learning from the Web with Hyponym Pattern Linkage Graphs[C]. In: Proceedings of the 46th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies.2008.
[16] Cimiano P,Wenderoth J. Automatic Acquisition of Ranked Qualia Structures from the Web[C]. In:Proceedings of the 45th Annual Meeting of the Association for Computational Linguistics.2007:888-895.
[17] Yang H, Callan J. A Metric-based Framework for Automatic Taxonomy Induction[C]. In: Proceedings of the 47th Annual Meeting of the Association for Computational Linguistics.2009.
[18] Sanderson M, Croft B. Deriving Concept Hierarchies from Text[C]. In:Proceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval.New York: ACM Press, 1999:206-213.
[19] Lin D. Automatic Retrieval and Clustering of Similar Words[C]. In: Proceedings of the 17th International Conference on Computational Linguistics,Montreal, Quebec, Canada.1998: 768-774. 
[20] Yang H, Callan J. Learning the Distance Metric in a Personal Ontology [C].In: Proceedings of the 2nd International Workshop on Ontologies and Information Systems for the Semantic Web,Napa Valley, California, USA.2008:17-24.
[21] Pantel P, Lin D. Discovering Word Senses from Text [C]. In: Proceedings of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,Edmonton, Alberta, Canada.2002: 613-619.
[22] Pantel P, Ravichandran D. Automatically Labeling Semantic Classes[C]. In: Proceedings of the 2006 International Conference on Digital Government Research,San Diego, California.2006: 167-176. 
[23] Caraballo S. Automatic Acquisition of a Hypernym-Labeled Noun Hierarchy from Text[D]. Providence: Brown University, 2001.
[24] Girju R, Badulescu A, Moldovan D. Automatic Discovery of Part-Whole Relations[J]. Computational Linguistics, 2006, 32(1): 83-135.
[25] Buitelaar P, Cimiano P, Magnini B. Ontology Learning from Text: Methods, Evaluation and Applications[J]. Frontiers in Artificial Intelligence and Applications, 2005(123):569-572.

[1] Yan Yu,Lei Chen,Jinde Jiang,Naixuan Zhao. Measuring Patent Similarity with Word Embedding and Statistical Features[J]. 数据分析与知识发现, 2019, 3(9): 53-59.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938