Please wait a minute...
New Technology of Library and Information Service  2009, Vol. 25 Issue (12): 42-46    DOI: 10.11925/infotech.1003-3513.2009.12.08
article Current Issue | Archive | Adv Search |
Semantic Retrieval Using Ontology and Document Refinement
Chen Bing   Tai Xiaoying
(Faculty of Information Science and Engineering,Ningbo University, Ningbo 315211, China)
Export: BibTeX | EndNote (RIS)      

To enhance the retrieval accuracy of information search engine, this paper proposes an information retrieval system based on Ontology and document refinement, which is realized by employing the semantic description and relevance of Ontology to the system. It describes the using of LSI to replace the traditional VSM  in the results of sorting process. Using a comparative experiment, the authors show the new approach is more feasible and effective than VSM, which can improve the performance upto 10.55%-17.63%.

Key wordsOntology      Document refinement      Semantic retrieval      LSI      VSM     
Received: 27 October 2009      Published: 25 December 2009


Corresponding Authors: bing chen     E-mail:
About author:: Chen Bing,Tai Xiaoying

Cite this article:

Chen Bing,Tai Xiaoying. Semantic Retrieval Using Ontology and Document Refinement. New Technology of Library and Information Service, 2009, 25(12): 42-46.

URL:     OR

[1] Princeton University. WordNet-About WordNet[EB/OL]. [2009-11-17].
[2] 东南大学计算机科学与工程学院. Chinese WordNet[DB/OL]. [2009-11-17].
[3] 张敏,宋睿华,马少平.基于语义关系查询扩展的文档重构方法[J].计算机学报,2004, 27(10):1395-1401.
[4] Kontostathis A,Pottenger W M.A Mathematica1 View of Latent Semantic Indexing: Tracing Term Cco-occurrences[R]. 2002.
[5] 罗景, 涂新辉. 基于概率潜在语义分析的中文信息检索[J]. 计算机工程,2008,34(2): 199-201.
[6] 季铎,郑伟,蔡东风. 潜在语义索引中特征优化技术的研究[J]. 中文信息学报, 2009, 23(2): 69-76.
[7]  The Apache Software Foundation. Welcome to Lucene [EB/OL]. [2009-11-17].
[8]  The National Institute of Standards and Technology. JAMA:A Java Matrix Package [EB/OL]. [2009-11-17].
[9] 邰晓英,北研二. 信息检索技术导论[M]. 北京: 科学出版社, 2006: 21-22.
[10] 刘挺,秦兵,张宇,等. 信息检索系统导论[M]. 北京:机械工业出版社,2008:51-52.

[1] Shaohua Qiang,Yunlu Luo,Yupeng Li,Peng Wu. Ontology Reasoning for Financial Affairs with RBR and CBR[J]. 数据分析与知识发现, 2019, 3(8): 94-104.
[2] Shiqi Deng,Liang Hong. Constructing Domain Ontology for Intelligent Applications: Case Study of Anti Tele-Fraud[J]. 数据分析与知识发现, 2019, 3(7): 73-84.
[3] Zhu Fu,Yuefen Wang,Xuhui Ding. Semantic Representation of Design Process Knowledge Reuse[J]. 数据分析与知识发现, 2019, 3(6): 21-29.
[4] Guangshang Gao. A Survey of User Profiles Methods[J]. 数据分析与知识发现, 2019, 3(3): 25-35.
[5] Ying Wang,Li Qian,Jing Xie,Zhijun Chang,Beibei Kong. Building Knowledge Graph with Sci-Tech Big Data[J]. 数据分析与知识发现, 2019, 3(1): 15-26.
[6] He Youshi,He Shufang. Sentiment Mining of Online Product Reviews Based on Domain Ontology[J]. 数据分析与知识发现, 2018, 2(8): 60-68.
[7] Tang Huihui,Wang Hao,Zhang Zixuan,Wang Xueying. Extracting Names of Historical Events Based on Chinese Character Tags[J]. 数据分析与知识发现, 2018, 2(7): 89-100.
[8] Pang Beibei,Gou Juanqiong,Mu Wenxin. Extracting Topics and Their Relationship from College Student Mentoring[J]. 数据分析与知识发现, 2018, 2(6): 92-101.
[9] Ding Shengchun,Liu Menglu,Fu Zhu. Unified Multidimensional Model Based on Knowledge Flow in Conceptual Design[J]. 数据分析与知识发现, 2018, 2(2): 11-19.
[10] Tu Haili,Tang Xiaobo. Building Product Recommendation Model Based on Tags[J]. 数据分析与知识发现, 2017, 1(9): 28-39.
[11] Chen Erjing,Jiang Enbo. Review of Studies on Text Similarity Measures[J]. 数据分析与知识发现, 2017, 1(6): 1-11.
[12] Bai Rujiang,Leng Fuhai,Liao Junhua. An Improved Cosine Text Similarity Computing Method Based on Semantic Chunk Feature[J]. 数据分析与知识发现, 2017, 1(6): 56-64.
[13] Wu Dan,Liu Chang,Li Yi. Changing Sentiments of Pedestrian Navigation System Users[J]. 数据分析与知识发现, 2017, 1(5): 42-51.
[14] Yin Xiangquan,Li Shuning. Analyzing Website Navigation Features of Top U.S. Academic Libraries[J]. 数据分析与知识发现, 2017, 1(3): 90-95.
[15] Liu Jian,Bi Qiang,Liu Qingxu,Wang Fu. New Content Recommendation Service of Digital Literature[J]. 现代图书情报技术, 2016, 32(9): 70-77.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938