Please wait a minute...
New Technology of Library and Information Service  2010, Vol. 26 Issue (1): 41-45    DOI: 10.11925/infotech.1003-3513.2010.01.08
article Current Issue | Archive | Adv Search |
Research on Mashup Tools
Ji Shanshan1,2   Li Yu1   Zhou Qiang1
1(National Science Library, Chinese Academy of Sciences, Beijing 100190, China)
2(Graduate University of Chinese Academy of Sciences, Beijing 100049, China)
Download: PDF(567 KB)   HTML  
Export: BibTeX | EndNote (RIS)      

After revealing the current research status and features of Mashup tools, this paper introduces some relevant technologies and classification models of Mashup tools. And based on this, the paper designs a new classification model composed of Data Mashup tool, Presentation Mashup tool and Enterprise Mashup tool. In the same time, it analyzes the main functions and crucial technologies of typical Mashup tools.

Key wordsMashup tool      Classification      Enterprise Mashup      Architecture       
Received: 16 October 2009      Published: 25 January 2001


Corresponding Authors: Shanshan Ji     E-mail:
About author:: Ji Shanshan,Li Yu,Zhou Qiang

Cite this article:

Ji Shanshan,Li Yu,Zhou Qiang. Research on Mashup Tools. New Technology of Library and Information Service, 2010, 26(1): 41-45.

URL:     OR

[1] Wikipedia[DB/OL].[2009-09-10].
[2]Koschmider A, Torres V, Pelechano V. Elucidating the Mashup Hype: Definition, Challenges,
Methodical Guide and Tools for Mashups[R/OL].[2009-09-10].
[3] Housingmaps[EB/OL].[2009-09-10].
[4] Forrester: Enterprise Mashups to Hit $700 Million by 2013[EB/OL].
[5] SIMILE Project[EB/OL].[2009-08-24].
[6] Introducing OpenAjax Hub 2.0 and Secure Mashups[EB/OL].[2009-09-10].
[7] Sohei Ikeda, Takakazu Nagamine, Tomio Kamada. Application Framework with
Demand-Driven Mashup for Selective Browsing[C].In:Proceedings of the 10th International
Conference on Information Integration and Web-based Applications & Services,Linz, Austria.
New York, NY, USA: ACM,2008:33-40. 
[8]Wang G L,Yang S H, Han Y B. Mashroom: End-user Mashup Programming Using Nested
[9]Atwood M,Balfanz D,Bounds D, et al. OAuth Core 1.0 Revision [EB/OL].[ 2009-09-10].
[10] 李峰,李春旺.Mashup关键技术研究[J].现代图书情报技术,2009 (1): 44-49.
[11] ICT ROMULUS Report: D4.1-Annual Report on Mashup Integration[R/OL].
[12] Hoyer V,  Fischer M. Market Overview of Enterprise Mashup Tools[C]. In:Proceedings
of the 6th International Conference on Service-oriented Computing,Sydney, Australia. Berlin,
Heidelberg:Springer  Verlag,2008:708-721.
[13] Giusy Di Lorenzo, Hakim Hacid, Hye-Young Paik,et al. Data Integration in Mashups
[EB/OL]. [2009-08-24].
[14] 李春旺,肖伟.集成融汇:概念、模式与应用[J].现代图书情报技术,2008(12):22-26.
[15] Apatar[EB/OL].[2009-09-10].
[16] Netvibes Overview 2009[EB/OL].[2009-09-10].
[17] Hoyer V,  Stanoesvka-Slabeva K,  Janner T, et al. Enterprise Mashups: Design Principles
Towards the Long Tail of User Needs[EB/OL]. [2009-08-24].
[18] Reference Architecture for Enterprise ‘Mashups’[EB/OL]. [2009-08-24].
[19] Javier López, Alberto Pan, Fernando Bellas, et al. Towards a Reference Architecture for
Enterprise Mashups[EB/OL]. [2009-08-24]. http://www.sistedes.ess/TJISBD/Vol-2/No-2/articles/Lopez.pdf.
[20] JackBe Presto: The Enterprise Mashup Platform[EB/OL].[2009-08-24].

[1] Ru Li,Rui Li,Jie Jiang,Huayi Wu. Spatio-Temporal Characteristics of WMTS Access Sessions[J]. 数据分析与知识发现, 2019, 3(6): 1-11.
[2] Cheng Zhou,Hongqin Wei. Evaluating and Classifying Patent Values Based on Self-Organizing Maps and Support Vector Machine[J]. 数据分析与知识发现, 2019, 3(5): 117-124.
[3] Bengong Yu,Yangnan Chen,Ying Yang. Classifying Short Text Complaints with nBD-SVM Model[J]. 数据分析与知识发现, 2019, 3(5): 77-85.
[4] Qingqing Zhang,Xingshi He,Huimin Wang,Shengjun Meng. Text Sentiment Classification Based on Deep Belief Network[J]. 数据分析与知识发现, 2019, 3(4): 71-79.
[5] Lianjie Xiao,Mengrui Gao,Xinning Su. An Under-sampling Ensemble Classification Algorithm Based on Fuzzy C-Means Clustering for Imbalanced Data[J]. 数据分析与知识发现, 2019, 3(4): 90-96.
[6] Sisi Gui,Wei Lu,Xiaojuan Zhang. Temporal Intent Classification with Query Expression Feature[J]. 数据分析与知识发现, 2019, 3(3): 66-75.
[7] Xiang Xue,Yuxiang Zhao. Exploring User Mental Models of Online Music Classification System: Case Study of College Students[J]. 数据分析与知识发现, 2019, 3(2): 1-12.
[8] Zixuan Zhang,Hao Wang,Liping Zhu,Sanhong eng. Identifying Risks of HS Codes by China Customs[J]. 数据分析与知识发现, 2019, 3(1): 72-84.
[9] Hui Li,Yaqing Chai. Fine-Grained Sentiment Analysis Based on Convolutional Neural Network[J]. 数据分析与知识发现, 2019, 3(1): 95-103.
[10] Jiehua Wu,Jing Shen,Bei Zhou. Classifying Multilayer Social Network Links Based on Transfer Component Analysis[J]. 数据分析与知识发现, 2018, 2(9): 88-99.
[11] Xinlei Li,Hao Wang,Xiaomin Liu,Sanhong Deng. Comparing Text Vector Generators for Weibo Short Text Classification[J]. 数据分析与知识发现, 2018, 2(8): 41-50.
[12] Longjia Jia,Bangzuo Zhang. Classifying Topics of Internet Public Opinion from College Students: Case Study of Sina Weibo[J]. 数据分析与知识发现, 2018, 2(7): 55-62.
[13] Lin Li,Hui Li. Computing Text Similarity Based on Concept Vector Space[J]. 数据分析与知识发现, 2018, 2(5): 48-58.
[14] Tingxin Wen,Yangzi Li,Jingshuang Sun. Extracting Text Features with Improved Fruit Fly Optimization Algorithm[J]. 数据分析与知识发现, 2018, 2(5): 59-69.
[15] Cuiqing Jiang,Kailun Song,Yong Ding,Yao Liu. Identifying Potential Customers Based on User-Generated Contents[J]. 数据分析与知识发现, 2018, 2(3): 1-8.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938