Please wait a minute...
New Technology of Library and Information Service  2010, Vol. 26 Issue (1): 57-65    DOI: 10.11925/infotech.1003-3513.2010.01.11
article Current Issue | Archive | Adv Search |
The Schema Matching of XML and DTD Based on Weighted XML Data Model
Li Shuqing   Cheng Guoda   Wang Weimin
(College of Information Engineering, Nanjing University of Finance & Economics, Nanjing 210046, China)
Download: PDF(498 KB)   HTML  
Export: BibTeX | EndNote (RIS)      
Abstract  

This paper first introduces standard XML reference instants and XML data instants based on the weighted XML data model. Then it displays the expression ways of constraints in DTD. Furthermore, the paper also shows the approaches on how to implement similarity algorithm,with an emphasis on how to find out a matching node with standard XML reference instants and to get the similarity algorithm of standard XML reference instants and that of XML data instants.

Key wordsWeighted XML      DTD      Similarity      Schema matching     
Received: 07 December 2009      Published: 25 January 2001
: 

TP391

 
Corresponding Authors: Li Shu-qing     E-mail: leeshuqing@163.com
About author:: Li Shuqing,Cheng Guoda,Wang Weimin

Cite this article:

Li Shuqing,Cheng Guoda,Wang Weimin. The Schema Matching of XML and DTD Based on Weighted XML Data Model. New Technology of Library and Information Service, 2010, 26(1): 57-65.

URL:

http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/10.11925/infotech.1003-3513.2010.01.11     OR     http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/Y2010/V26/I1/57

[1] Bertino E, Guerrini G,Mesiti M. A Matching Algorithm for Measuring the Structural
Similarity Between an XML Documents and a DTD and Its Applications[J]. Information Systems, 2004, 29(1):23-46.
[2] Tekli J, Chbeir R, Yetongnon K. An XML Grammar Comparison Framework–Technical Report[R/OL].
[2009-11-11].http://www.u-bourgogne.fr/Dbconf/XGM/MatchersAndExperiments.pdf.
[3] Rahm E,Bernstein  P A. A Survey of Approaches to Automatic Schema Matching[J]. The VLDB Journal, 2001, 10(4):334-350.
[4] Silvana Castano,Valeria De Antonellis,Sabrina De Capitani di Vimercati. Global Viewing
of Heterogeneous Data Sources[J]. IEEE Transactions on Knowledge and Data Engineering, 2001,13(2):277-297.
[5] Li J X, Liu J X,Liu C F, et al. Computing Structural Similarity of Source XML Schemas
Against Domain XML Schema[C].In:Proceedings of the 19th Conference on Australasian
Database,Gold Coast, Australia. Darlinghurst, Australia:Australian Computer Society,2008:155-164.
[6] Guerrini G, Mesiti M, Sanz I. An Overview of Similarity Measures for Clustering XML
Documents[EB/OL]. [2009-12-01].http://krono.act.uji.es/publications/pdf/gms.pdf.
[7] Nierman A, Jagadish H V. Evaluating Structural Similarity in XML Documents[C].
In:Proceedings of the 5th ACM SIGMOD International Workshop on the Web and Databases.2002: 61-66.
[8] Dalamagas T, Cheng T, Winkel K, et al. A Methodology for Clustering XML Documents by
Structure[J]. Information Systems, 2006, 31(3):187-228.
[9] Tekli J, Chbeir R, Yetongnon K. Structural Similarity Evaluation Between XML Documents
and DTDs[C]. In:Proceedings of the 8th International Conference on Web Information Systems
Engineering (WISE’07),Nancy, France. Berlin Heidelberg: Springer-Verlag, 2007: 196-201.
[10] Yang R, Kalnis  P, Tung A K H. Similarity Evaluation on Tree-structured Data[C]. In:
Proceedings of the 2005 ACM SIGMOD International Conference on Management of Data,
Baltimore, Maryland. New York, USA:ACM Press, 2005: 754-765.
[11] Doan A, Domingos P, Halevy A Y. Reconciling Schemas of Disparate Data Sources: A
Machine Learning Approach[J]. ACM SIGMOD Record, 2001,30(2):509-520.
[12] Su H, Padmanabhan S, Lo M L. Identification of Syntactically Similar DTD Elements for
Schema Matching[C]. In: Proceedings of the 2nd International Conference on Advances in
Web-Age Information Management. London, UK:Springer-Verlag,2001: 145-159.
[13] Boukottaya A, Vanoirbeek C. Schema Matching for Transforming Structured Documents
[C]. In:Proceedings of the 2005 ACM Symposium on Document Engineering, Bristol, UK. New York, USA: ACM Press, 2005: 101-110.
[14] Yi S, Huang B, Chan W T. XML Application Schema Matching Using Similarity Measure
and Relaxation Labeling[J]. Information Sciences, 2005, 169(1-2): 27–46.
[15] Formica A. Similarity of XML-Schema Elements: A Structural and Information Content
Approach[J]. The Computer Journal, 2008, 51(2):240-254.
[16] Duta A C, Barker K, Alhajj R. RA: An XML Schema Reduction Algorithm[C]. In: Proceedings of ADBIS. 2006.
[17] Thang H Q, Nam V S. XML Schema Automatic Matching Solution[J]. International
Journal of Computer Systems Science and Engineering, 2008, 4(1): 68-74.
[18] Do H H, Rahm E. COMA: A System for Flexible Combination of Schema Matching
Approaches[C]. In: Proceedings of the 28th VLDB Conference, Hong Kong,China. 2002: 610-621.

[1] Peng Guan,Yuefen Wang,Zhu Fu. Analyzing Topic Semantic Evolution with LDA: Case Study of Lithium Ion Batteries[J]. 数据分析与知识发现, 2019, 3(7): 61-72.
[2] Peiyao Zhang,Dongsu Liu. Topic Evolutionary Analysis of Short Text Based on Word Vector and BTM[J]. 数据分析与知识发现, 2019, 3(3): 95-101.
[3] Dan Wu,Liuxing Lu. Semantic Changes of Queries from Cross-device Searching[J]. 数据分析与知识发现, 2018, 2(8): 69-78.
[4] Haixia Sun,Lei Wang,Yingjie Wu,Weina Hua,Junlian Li. Matching Strategies for Institution Names in Literature Database[J]. 数据分析与知识发现, 2018, 2(8): 88-97.
[5] Ya’nan Zhao,Yuqing Wang. Research on Collaborative Filtering Traveling Products Recommendation Algorithm Based on IUNCF[J]. 数据分析与知识发现, 2018, 2(7): 63-71.
[6] Mansheng Xiao, Lijuan Zhou, Zhicheng Wen. A Fuzzy C-Means Algorithm Based on Huffman Tree[J]. 数据分析与知识发现, 2018, 2(7): 81-88.
[7] Daoping Wang,Zhongyang Jiang,Boqing Zhang. Collaborative Filtering Algorithm Based on Gray Correlation Analysis and Time Factor[J]. 数据分析与知识发现, 2018, 2(6): 102-109.
[8] Lin Li,Hui Li. Computing Text Similarity Based on Concept Vector Space[J]. 数据分析与知识发现, 2018, 2(5): 48-58.
[9] Yong Wang,Yongdong Wang,Huifang Guo,Yumin Zhou. Measuring Item Similarity Based on Increment of Diversity[J]. 数据分析与知识发现, 2018, 2(5): 70-76.
[10] Lingfeng Hua,Gaoming Yang,Xiujun Wang. Recommending Diversified News Based on User’s Locations[J]. 数据分析与知识发现, 2018, 2(5): 94-104.
[11] Junwan Liu,Bo Yang,Feifei Wang. Ranking Scholarly Impacts Based on Citations and Academic Similarity[J]. 数据分析与知识发现, 2018, 2(4): 59-70.
[12] Yuying Wu,Ping Sun,Xijun He,Guorui Jiang. Predicting Transactions Among Agents in Patent Transfer Weighted Networks for New Energy[J]. 数据分析与知识发现, 2018, 2(11): 73-79.
[13] Jianmin Xu,Caiyun Xu. Computing Similarity of Sci-Tech Documents Based on Texts and Formulas[J]. 数据分析与知识发现, 2018, 2(10): 103-109.
[14] Erjing Chen,Enbo Jiang. Review of Studies on Text Similarity Measures[J]. 数据分析与知识发现, 2017, 1(6): 1-11.
[15] Rujiang Bai,Fuhai Leng,Junhua Liao. An Improved Cosine Text Similarity Computing Method Based on Semantic Chunk Feature[J]. 数据分析与知识发现, 2017, 1(6): 56-64.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938   E-mail:jishu@mail.las.ac.cn