Please wait a minute...
New Technology of Library and Information Service  2010, Vol. 26 Issue (3): 13-18    DOI: 10.11925/infotech.1003-3513.2010.03.03
article Current Issue | Archive | Adv Search |
Sequential Patterns Mining from Digital Library User’s Retrieval Behavior Based on Concept Lattice
Huang Wei   Bi Qiang   Teng Guangqing
(School of Management, Jilin University, Changchun 130022, China)
Download: PDF(485 KB)   HTML  
Export: BibTeX | EndNote (RIS)      

This paper presents a method to mining the sequential patterns from the user’s retrieval behaviors of digital library based on concept lattice. This method searches out the sequential patterns of the user’s retrieval behaviors by mining ideas of “combining top-down and dividing-and-ruling based on concept lattice”, using the application of the re-usability of concept lattice and its advantage in the extraction of frequent itemset. The method does not require comprehensive scanning to the original user information database, and it greatly reduces the time of mining that can help digital libraries to enhance the user retrieval speed, and improve the personalized services.

Key wordsConcept lattice      Digital library      User’s retrieval behavior      Sequential patterns     
Received: 22 February 2010      Published: 25 March 2010


Corresponding Authors: Bi Qiang     E-mail:
About author:: Huang Wei,Bi Qiang,Teng Guangqing

Cite this article:

Huang Wei,Bi Qiang,Teng Guangqing. Sequential Patterns Mining from Digital Library User’s Retrieval Behavior Based on Concept Lattice. New Technology of Library and Information Service, 2010, 26(3): 13-18.

URL:     OR

[1] Agrawal R, Srikant R. Mining Sequential Patterns[C]. In: Proceedings of the 11th International Conference on Data Engineering, Taipei. 1995:3-14.
[2] Srikant R, Agrawal R. Mining Sequential Patterns: Generalizations and Performance Improvements[C]. In: Proceedings of the 5th International Conference on Extending Database Technology. London: Springer-Verlag, 1996:3-17.
[3] Masseglia F, Cathala F, Poncelet P. The PSP Approach for Mining Sequential Patterns[C]. In: Proceedings of the 2nd European Symposium on Principles of Data Mining and Knowledge Discovery.London: Springer-Verlag,1998:176-184.
[4] Zaki M J. SPADE: An Efficient Algorithm for Mining Frequent Sequences[J]. Machine Learning, 2001,42 (1-2):31-60.
[5] Han J W, Pei J,  Mortazavi-Asl B,et al. FreeSpan: Frequent Pattern-Projected Sequential Pattern Mining[C]. In: Proceedings of the 6th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Boston,USA.2000:355-359.
[6] Pei J, Han J W, Mortazavi-Asl B,et al. PrefixSpan: Mining Sequential Patterns Efficiently by Prefix-Projected Pattern Growth[C]. In: Proceedings of the 17th International Conference on Data Engineering.2001:215-224.
[7] 聂成林,王浩,胡学钢.基于概念格的序列模式挖掘[J].计算机工程,2003,29(20):60-62,79.
[8] 金阳,左万利.多维概念格与多维序列模式的增量挖掘[J].计算机研究与发展,2007,44(11): 1816-1824.
[9] 李云,徐涛,田素方,等.带兴趣度的序列概念格模型及其构造[J].计算机应用,2008,28(3):726-728,741.
[10] 吴大岳,谢福鼎,孙岩,等.时序波动关联规则概念格并行挖掘的一个新算法[J].计算机科学,2008,35(10): 158-161.
[11] 何小卫,牛海峰,许黎明,等.基于趋势概念格的决策规则挖掘[J].计算机应用,2009,29(4):1106-1109,1113.
[12] 甘特尔 R, 威尔 R.形式概念分析[M]. 北京:科学出版社,2007.
[13] Davis F D. Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology[J]. MIS Quarterly,1989,13(3):318-340.

[1] Jie Li,Fang Yang,Chenxi Xu. A Personalized Recommendation Algorithm with Temporal Dynamics and Sequential Patterns[J]. 数据分析与知识发现, 2018, 2(7): 72-80.
[2] Yunfei Qi,Yuxiang Zhao,Qinghua Zhu. Linked Data for Mobile Visual Search System of Digital Library[J]. 数据分析与知识发现, 2017, 1(1): 81-90.
[3] Hong Liang,Qian Chen,Fan Xing. Context-aware Recommendation System for Mobile Digital Libraries[J]. 现代图书情报技术, 2016, 32(7-8): 110-119.
[4] Liu Jian,Bi Qiang,Ma Zhuo. Assessment of Digital Library’s Micro-services: An Empirical Study[J]. 现代图书情报技术, 2016, 32(5): 22-29.
[5] Lu Jiaying,Yuan Qinjian,Huang Qi,Qian Yunjie. Building Product Domain Ontology with Concept Lattice Theory[J]. 现代图书情报技术, 2016, 32(5): 38-46.
[6] Chen Guo, Hu Changping. Research on the Structural Features of Keyword Network of Scientific Research Areas:An Empirical Study of LIS[J]. 现代图书情报技术, 2014, 30(7): 84-91.
[7] Xiong Yongjun, Yuan Xiaoyi. Design and Implementation of Automatic Monitoring System about Library Document Database Running State[J]. 现代图书情报技术, 2014, 30(7): 127-132.
[8] Wang Chuanqing, Bi Qiang. System Model of Digital Library Automatic Semantic Annotation Tool[J]. 现代图书情报技术, 2014, 30(6): 17-24.
[9] Wei Meng. Literature Recommendation Using Evolution Patterns[J]. 现代图书情报技术, 2014, 30(4): 20-26.
[10] Hu Changping, Chen Guo. A New Feature Selection Method Based on Term Contribution in Co-word Analysis[J]. 现代图书情报技术, 2013, 29(7/8): 89-93.
[11] Wang Zhongyi, Xia Lixin, Shi Yijin, Zheng Senmao. The Creation and Publishing of Middle Linked Data in Digital Library[J]. 现代图书情报技术, 2013, (5): 28-33.
[12] Liu Wei, Xia Cuijuan, Zhang Chunjing. Big Data and Linked Data: The Emerging Data Technology for the Future of Librarianship[J]. 现代图书情报技术, 2013, (4): 2-9.
[13] Zhou Shanshan, Bi Qiang, Gao Junfeng. A Method of Information Retrieval Results Visualization Based on Social Network Analysis[J]. 现代图书情报技术, 2013, 29(11): 81-85.
[14] Wang Ping, Zhi Fengwen, Wang Yi, Shen Tao. Analyzing Competitive Intelligence of Enterprises with Concept Lattice[J]. 现代图书情报技术, 2013, 29(10): 66-72.
[15] Chen Junjie, Huang Guofan. Construction Strategy and Main Technology of the Mobile Library APP——Take iOS for Instance[J]. 现代图书情报技术, 2012, (9): 75-80.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938