Please wait a minute...
New Technology of Library and Information Service  2010, Vol. 26 Issue (4): 66-71    DOI: 10.11925/infotech.1003-3513.2010.04.11
article Current Issue | Archive | Adv Search |
Research on the Hot Topics Discovery Algorithm Based on Improved Ant Colony Clustering
 Lu  Bei, Cheng  Xiao, Chen  Zhi-Qun
(Institute of Computer Application Technology, Hangzhou Dianzi University, Hangzhou 310018, China)
Download: PDF(632 KB)   HTML  
Export: BibTeX | EndNote (RIS)      
Abstract  

For the hot topics found is based on the clustering algorithm,this paper introduces the improved ant colony clustering algorithm,and raises Class Attention Degree (CAD) concept in order to determine the class of hot level and to distinguish popular categories as well as unpopular categories. Meanwhile,hot topic set is erxtracted on this basis. Experimental results show that the improved ant colony clustering algorithm has in certain effects to the hot topics found.

Key wordsOnline public opinion        Ant-clustering        Hot categories        Topic     
Received: 22 March 2010      Published: 25 April 2010
: 

G353.1

 
Corresponding Authors: Cheng Xiao     E-mail: chx230861@126.com

Cite this article:

Lu Bei, Cheng Xiao, Chen Zhi-Qun. Research on the Hot Topics Discovery Algorithm Based on Improved Ant Colony Clustering. New Technology of Library and Information Service, 2010, 26(4): 66-71.

URL:

http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/10.11925/infotech.1003-3513.2010.04.11     OR     http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/Y2010/V26/I4/66

[1] 第24次中国互联网络发展状况调查统计报告[EB/OL]. (2009-07-16).[2010-02-22]. http://research.cnnic.cn.
[2] 陆蓓,程肖,谌志群.互联网舆情挖掘研究综述[J].情报资料工作,2010(2):41-45.
[3] Allan J. Topic Detection and Tracking:Event-based Information Organization [M].Kluwer Academic Publishers,2002.
[4] Lumer E D, Faieta B. Diversity and Adaptation in Populations of Clustering Ants[C].In:Proceedings of the 3rd International Conference on Simulation of Adaptive Behavior:From Animals to Animals. 1994:501- 508.
[5] 鄢文晋.蚁群算法及其在数据挖掘中的应用[D].重庆:重庆大学,2007.
[6] 曾海群.蚁群聚类算法研究[D].长沙:中南大学,2008.
[7] 莫锦萍,陈琴,马琳,等.一种新的K-Means蚁群聚类算法[J].广西社会科学院学报,2008,24(4):102-104.
[8] 段海滨.蚁群算法原理及其应用[M].北京:科学出版社,2007:290-297.
[9] 吴斌,郑毅,傅伟鹏,等. 一种基于群体智能的客户行为分析算法[J].计算机学报, 2003, 26(8):913-918.
[10] 李保利,俞士汶.话题识别与跟踪研究[J].计算机工程与应用,2003,39(17):7-10.
[11] 罗亚平,王枞,周延泉.基于关注度的热点话题发现模型[C].见:第七届中文信息处理国际会议论文集.武汉:中国中文信息学会,2007:402-408.
[12] 曾依灵,许洪波.网络热点信息发现研究[J].通信学报,2007,28(12):141-146.
[13] 刘星星,何婷婷,龚海军,等.网络热点事件发现系统的设计[J].中文信息学报,2008,22(6):80-85.

[1] Qingtian Zeng,Xiaohui Hu,Chao Li. Extracting Keywords with Topic Embedding and Network Structure Analysis[J]. 数据分析与知识发现, 2019, 3(7): 52-60.
[2] Peng Guan,Yuefen Wang,Zhu Fu. Analyzing Topic Semantic Evolution with LDA: Case Study of Lithium Ion Batteries[J]. 数据分析与知识发现, 2019, 3(7): 61-72.
[3] Ruihua Qi,Junyi Zhou,Xu Guo,Caihong Liu. Extracting Book Review Topics with Knowledge Base[J]. 数据分析与知识发现, 2019, 3(6): 83-91.
[4] Bengong Yu,Yangnan Chen,Ying Yang. Classifying Short Text Complaints with nBD-SVM Model[J]. 数据分析与知识发现, 2019, 3(5): 77-85.
[5] Jiang Wu,Guanjun Liu,Xian Hu. An Overview of Online Medical and Health Research: Hot Topics, Theme Evolution and Research Content[J]. 数据分析与知识发现, 2019, 3(4): 2-12.
[6] Lu An,Yanping Liang. Selection of Users’ Behaviors Towards Different Topics of Microblog on Public Health Emergencies[J]. 数据分析与知识发现, 2019, 3(4): 33-41.
[7] Tingxin Wen,Yangzi Li,Jingshuang Sun. News Hotspots Discovery Method Based on Multi Factor Feature Selection and AFOA/K-means[J]. 数据分析与知识发现, 2019, 3(4): 97-106.
[8] Guangshang Gao. A Survey of User Profiles Methods[J]. 数据分析与知识发现, 2019, 3(3): 25-35.
[9] Peiyao Zhang,Dongsu Liu. Topic Evolutionary Analysis of Short Text Based on Word Vector and BTM[J]. 数据分析与知识发现, 2019, 3(3): 95-101.
[10] Linna Xi,Yongxiang Dou. Examining Reposts of Micro-bloggers with Planned Behavior Theory[J]. 数据分析与知识发现, 2019, 3(2): 13-20.
[11] Hongqinling Wang,Zhichao Ba,Gang Li. Conversational Topic Intensity Calculation and Evolution Analysis of WeChat Group[J]. 数据分析与知识发现, 2019, 3(2): 33-42.
[12] Jie Zhang,Junbo Zhao,Dongsheng Zhai,Ningning Sun. Patent Technology Analysis of Microalgae Biofuel Industrial Chain Based on Topic Model[J]. 数据分析与知识发现, 2019, 3(2): 52-64.
[13] Yanshuang Mei,Hengmin Zhu,Jing Wei. A Study on the Mechanism of Media Collaboration on the Spread of Internet Public Opinion[J]. 数据分析与知识发现, 2019, 3(2): 65-71.
[14] Junwan Liu,Zhixin Long,Feifei Wang. Finding Collaboration Opportunities from Emerging Issues with LDA Topic Model and Link Prediction[J]. 数据分析与知识发现, 2019, 3(1): 104-117.
[15] Changlei Fu,Li Qian,Huaping Zhang,Huaming Zhao,Jing Xie. Mining Innovative Topics Based on Deep Learning[J]. 数据分析与知识发现, 2019, 3(1): 46-54.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938   E-mail:jishu@mail.las.ac.cn