Please wait a minute...
New Technology of Library and Information Service  2010, Vol. 26 Issue (7/8): 79-83    DOI: 10.11925/infotech.1003-3513.2010.07-08.14
article Current Issue | Archive | Adv Search |
Automatic Identification of Prepositional Phrase Based on Conditional Random Field
Zhu Danhao  Wang Dongbo  Xie Jing
(Department of Information Management, Nanjing University, Nanjing 210093, China)
Download: PDF(384 KB)   HTML  
Export: BibTeX | EndNote (RIS)      
Abstract  

Based on Conditional Random Fields(CRF), the article identifies the Chinese prepositional phrase. In order to identify the prepositional phrase effectively, the article counts and analyzes the external and internal linguistic features of the prepositional phrase. The prepositional phrases without nesting and nested prepositional phrases are identified with the complex feature model,and in open tests,the best F value can reach 90.29% and 89.99% respectively.

Key wordsConditional random field      Prepositional phrase      Feature template      Automatic identification     
Received: 21 June 2010      Published: 19 September 2010
: 

TP391

 
Corresponding Authors: Zhu Danhao     E-mail: zhudanhaozhudanhao@gmail.com
About author:: Zhu Danhao Wang Dongbo Xie Jing

Cite this article:

Zhu Danhao Wang Dongbo Xie Jing. Automatic Identification of Prepositional Phrase Based on Conditional Random Field. New Technology of Library and Information Service, 2010, 26(7/8): 79-83.

URL:

http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/10.11925/infotech.1003-3513.2010.07-08.14     OR     http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/Y2010/V26/I7/8/79

[1] 周强,孙茂松,黄昌宁.汉语句子的组块分析体系[J].计算机学报,1999,22(11):1158-1165.
[2] Brill E,Resnik P.A Rule-based Approach to Prepositional Phrase-attachment Disambiguation[C]. In:Proceedings of the 15th Conference on Computational Linguistics,Kyoto,Japan.1994.
[3] Pantel P,Lin D.An Unsupervised Approach to Prepositional Phrase Attachment Using Contextually Similar Words[C].In:Proceedings of Association for Computational Linguistics.1998.
[4] Schwartz L,Aikawa T,Quirk C.Disambiguation of English PP Attachment Using Multilingual Aligned Data[C].In: Proceedings of MT Summit IX,New Orleans,USA.2003.
[5] McLauchlan M.Thesauruses for Prepositional Phrase Attachment[C].In:Proceedings of CoNLL,Boston,MA,USA.2004:73-80.
[6] 干俊伟,黄德根.汉语介词短语的自动识别[J].中文信息学报,2005,19(4):17-23.
[7] 奚建清,罗强.基于HMM的汉语介词短语自动识别研究[J].计算机工程,2007,33(3):172-173,182.
[8] 于俊涛. 基于最大熵的汉语介词短语自动识别[D].大连:大连理工大学,2006:35.
[9] The Features of CRF++[EB/OL].[2009-12-06].http://crfpp.sourceforge.net/#features.
[10] Lafferty J, McCallum A, Pereira F. Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data[C]. In: Proceedings of International Conference on Machine Learning.2001:3-4.
[11] Sutton C, McCallum A. An Introduction to Conditional Random Fields for Relational Learning[M]. MIT Press, 2006:2-7.

[1] Han Huang,Hongyu Wang,Xiaoguang Wang. Automatic Recognizing Legal Terminologies with Active Learning and Conditional Random Field Model[J]. 数据分析与知识发现, 2019, 3(6): 66-74.
[2] Huihui Tang,Hao Wang,Zixuan Zhang,Xueying Wang. Extracting Names of Historical Events Based on Chinese Character Tags[J]. 数据分析与知识发现, 2018, 2(7): 89-100.
[3] Xiaoyu Wang,Bin Li. Automatically Segmenting Middle Ancient Chinese Words with CRFs[J]. 数据分析与知识发现, 2017, 1(5): 62-70.
[4] Dongbo Wang,Yi Wu,Wenhao Ye,Ruilun Liu. Extracting Events of Food Safety Emergencies with Characteristics Knowledge[J]. 数据分析与知识发现, 2017, 1(3): 54-61.
[5] Yue Zhang,Dongbo Wang,Danhao Zhu. Segmenting Chinese Words from Food Safety Emergencies[J]. 数据分析与知识发现, 2017, 1(2): 64-72.
[6] Lin Zhang,Ce Qin,Wenhao Ye. Automatic Recognition of Legal Language Entities Based on Conditional Random Fields[J]. 数据分析与知识发现, 2017, 1(11): 46-52.
[7] He Huixin,Liu Lijuan. A Scientific Research Object Labeling System Based on Active earning[J]. 现代图书情报技术, 2016, 32(3): 67-73.
[8] Jiang Chuntao. Automatic Annotation of Bibliographical References in Chinese Patent Documents[J]. 现代图书情报技术, 2015, 31(10): 81-87.
[9] He Yu, Lv Xueqiang, Xu Liping. A Chinese Term Extraction System in New Energy Vehicles Domain[J]. 现代图书情报技术, 2015, 31(10): 88-94.
[10] Li Xiangdong, Huo Yayong, Huang Li. Study of Book Pages Automatic Identification and Bibliographic Information Extraction[J]. 现代图书情报技术, 2014, 30(4): 71-77.
[11] Zeng Zhen, Lv Xueqiang, Li Zhuo. The Automatic Identification of Chinese Names in Query Logs[J]. 现代图书情报技术, 2014, 30(12): 71-77.
[12] Wang Hao, Zou Jieli, Deng Sanhong. Model Construction and Experiment Analysis of Automatic Indexing for Chinese Books[J]. 现代图书情报技术, 2013, 29(7/8): 55-62.
[13] Tang Yafen. Research of Automatically Recognizing Name in Pre-Qin Ancient Chinese Classics[J]. 现代图书情报技术, 2013, 29(7/8): 63-68.
[14] Lin Chen, Wang Lancheng. Object Recognition of Network Comments Based on Conditional Random Fields[J]. 现代图书情报技术, 2013, (6): 63-67.
[15] Gao Qiang, You Hongliang. Study on Named Entity Recognition Based on Cascaded Model for Field of Defense[J]. 现代图书情报技术, 2012, (11): 47-52.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938   E-mail:jishu@mail.las.ac.cn