Please wait a minute...
New Technology of Library and Information Service  2010, Vol. 26 Issue (7/8): 88-94    DOI: 10.11925/infotech.1003-3513.2010.07-08.16
article Current Issue | Archive | Adv Search |
Application of a Modified K-means Clustering Algorithm Based on PSO in Customer Segmentation of Securities Industry
Li Ying  Wu Yuanyuan  Ning Fujin
(Business School,East China University of Science and Technology, Shanghai 200237,China)
Download: PDF(469 KB)   HTML  
Export: BibTeX | EndNote (RIS)      

According to the deficiencies of K-means clustering,the paper proposes a modified clustering algorithm which uses SD and PSO algorithm, and achieves this integrated algorithm in Java. In the analysis, the authors take customer transaction data of a securities company in Shanghai as an example. By transforming the database into a form suitable for mining, the paper applies the modified clustering algorithm to cluster segmentation model, and the clustering results show that the improved clustering algorithm can get higher quality clustering results.

Key wordsPSO      K-means algorithm      Customer segmentation     
Received: 24 May 2010      Published: 19 September 2010



Corresponding Authors: Ning Fujin     E-mail:
About author:: Li Ying Wu Yuanyuan Ning Fujin

Cite this article:

Li Ying Wu Yuanyuan Ning Fujin. Application of a Modified K-means Clustering Algorithm Based on PSO in Customer Segmentation of Securities Industry. New Technology of Library and Information Service, 2010, 26(7/8): 88-94.

URL:     OR

[1] 王德广,姚鹏,黄明. K-PSO聚类算法在入侵检测中的研究[J]. 科学技术与工程, 2009, 9(18): 5383-5387.
[2] 张长胜,孙吉贵,杨凤芹,等. 一种基于PSO的动态聚类算法[J]. 计算机研究与发展, 2007, 44(z2): 89-93.
[3] Halkidi M, Vazirgiannis M, Batistakis I. Quality Scheme Assessment in the Clustering Process[ EB/OL]. [2010-06-09].
[4] Kennedy J, Eberhart R C, Shi Y. Swarm Intelligence[M]. San Francisco: Morgan Kaufman Publisher, 2001.
[5] Selim S Z, Ismail M A. K-Means-Type Algorithms: A Generalized Convergence Theorem and Characterization of Local Optimality [J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 1984, 6(1):81-87.
[6] 孙才志,王敬东,潘俊.模糊聚类分析最佳聚类数的确定方法研究[J].模糊系统与数学, 2001, 15(1): 53-56.
[7] 李昕,郑宇,江芳泽. 用改进的RPCL算法提取聚类的最佳数目[J].上海大学学报, 1999, 5(5): 120-122.
[8] Xu L, Krzyzak A,Oja E. Rival Penalized Competitive Learning for Clustering Analysis, RBF Net and Curve Detection[J]. IEEE Transactions on Neural Networks, 1993,4(4): 63-64.
[9] Macqueen J. Some Methods for Classification and Analysis of Multivariate Observations[C]. In: Proceedings of the 5th Berkeley Symptom Math and Statist.1967: 281-297.
[10] 刘向东,沙秋夫,刘勇查,等.基于粒子群优化算法的聚类分析[J].计算机工程, 2006,32(6): 201-203.
[11] 沈艳,郭兵,古天祥.粒子群优化算法及其与遗传算法的比较[J].电子科技大学学报, 2005,34(5): 696-699.
[12] 刘靖明,韩丽川,侯立文. 基于粒子群的K-means聚类算法[J].系统工程理论与实践, 2005,25 (6):54-58.
[13] 傅景广,许刚,王裕国. 基于遗传算法的聚类分析[J].计算机工程, 2004,30(4): 122-124.

[1] Tingxin Wen,Yangzi Li,Jingshuang Sun. News Hotspots Discovery Method Based on Multi Factor Feature Selection and AFOA/K-means[J]. 数据分析与知识发现, 2019, 3(4): 97-106.
[2] Hongwei Liu,Hongming Gao,Li Chen,Mingjun Zhan,Zhouyang Liang. Identifying User Interests Based on Browsing Behaviors[J]. 数据分析与知识发现, 2018, 2(2): 74-85.
[3] Qingqing Zhang,Xilin Liu. Classifying Sentiments Based on BPSO Random Subspace[J]. 数据分析与知识发现, 2017, 1(5): 71-81.
[4] Xiaoxue Hu. Customer Segmentation with Adaptive Evolutionary Clustering[J]. 数据分析与知识发现, 2017, 1(12): 21-31.
[5] Chen Dongyi,Zhou Zicheng,Jiang Shengyi,Wang Lianxi,Wu Jialin. A Framework for Customer Segmentation on Enterprises’ Microblog[J]. 现代图书情报技术, 2016, 32(2): 43-51.
[6] Zhao Hui, Liu Huailiang. Research on Short Text Clustering Algorithm for User Generated Content[J]. 现代图书情报技术, 2013, 29(9): 88-92.
[7] Wu Suhui, Cheng Ying, Zheng Yanning, Pan Yuntao. Survey on K-means Algorithm[J]. 现代图书情报技术, 2011, 27(5): 28-35.
[8] Ji Yonghui. A Research on Retrieval Results Clustering and Relevant Recommendation in Digital Library[J]. 现代图书情报技术, 2008, 24(2): 69-75.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938