Please wait a minute...
New Technology of Library and Information Service  2010, Vol. 26 Issue (7/8): 110-113    DOI: 10.11925/infotech.1003-3513.2010.07-08.19
article Current Issue | Archive | Adv Search |
Design and Implementation of Related Document Recommendation in Document Retrieval System of NSTL
Zhang Zhiping  Li Linna
(Institute of Scientific & Technical Information of China, Beijing 100038, China)
Download: PDF(383 KB)   HTML  
Export: BibTeX | EndNote (RIS)      

 This paper proposes a new method for calculating similarity between secondary documents of National Science and Technology Library(NSTL), subsequently develops and implements a subsystem of real-time related documents recommendation. At last, a measurement which can theoretically evaluate the quality of recommendation results is presented. And the   experiment results demonstrate that the system can improve the service quality of document retrieval system of NSTL.

Key wordsDigital library      Related documents      Vector space model      NDCG     
Received: 19 April 2010      Published: 19 September 2010


Corresponding Authors: Li Linna     E-mail:
About author:: Zhang Zhiping Li Linna

Cite this article:

Zhang Zhiping Li Linna. Design and Implementation of Related Document Recommendation in Document Retrieval System of NSTL. New Technology of Library and Information Service, 2010, 26(7/8): 110-113.

URL:     OR

[1] Zhou D, Zhu S, Yu K, et al. Learning Multiple Graphs for Document Recommendations[C]. In: Proceedings of the 17th International Conference on World Wide Web. New York, NY,USA:ACM, 2008: 141-150.
[2] Chandrasekaran K. Concept Based Author Recommender System for CiteSeer[D]. Kansas,U.S.:University of Kansas, 2007.
[3]Huang Y C. Combining Social Networks and Content for Recommendation in a Literature Digital Library[D]. Taiwan:National Sun Yat-Sen University,2008.
[4] Smeaton A F, Callan J. Personalisation and Recommender Systems in Digital Libraries[J]. International Journal on Digital Libraries,2005, 5(4): 299-308.
[5] 陈祖琴, 张惠玲, 葛继科,等. 基于加权关联规则挖掘的相关文献推荐[J]. 现代图书情报技术,2007(10): 57-61.
[6] 张奇, 黄萱菁, 吴立德. 一种新的句子相似度度量及其在文本自动摘要中的应用[J]. 中文信息学报,2005, 19(2): 93-99.
[7] 周法国, 杨炳儒. 句子相似度计算新方法及在问答系统中的应用[J]. 计算机工程与应用,2008, 44(1): 165-167,178.
[8] Thorsten J. A Probabilistic Analysis of the Rocchio Algorithm with TFIDF for Text Categorization[C]. In: Proceedings of the 14th International Conference on Machine Learning. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.,1997: 143-151.
[9] Shani G, Gunawardana A. Evaluating Recommendation Systems[EB/OL].(2009-11-03).[2010-05-07].
[10] Jrvelin K, Keklinen J. Cumulated Gain-based Evaluation of IR Techniques[J]. ACM Transactions on Information Systems, 2002, 20(4): 422-446.

[1] Rujiang Bai,Fuhai Leng,Junhua Liao. An Improved Cosine Text Similarity Computing Method Based on Semantic Chunk Feature[J]. 数据分析与知识发现, 2017, 1(6): 56-64.
[2] Yunfei Qi,Yuxiang Zhao,Qinghua Zhu. Linked Data for Mobile Visual Search System of Digital Library[J]. 数据分析与知识发现, 2017, 1(1): 81-90.
[3] Hong Liang,Qian Chen,Fan Xing. Context-aware Recommendation System for Mobile Digital Libraries[J]. 现代图书情报技术, 2016, 32(7-8): 110-119.
[4] Liu Jian,Bi Qiang,Ma Zhuo. Assessment of Digital Library’s Micro-services: An Empirical Study[J]. 现代图书情报技术, 2016, 32(5): 22-29.
[5] Tan Xueqing, Zhou Tong, Luo Lin. A Text Classification Algorithm Based on the Average Category Similarity[J]. 现代图书情报技术, 2014, 30(9): 66-73.
[6] Chen Guo, Hu Changping. Research on the Structural Features of Keyword Network of Scientific Research Areas:An Empirical Study of LIS[J]. 现代图书情报技术, 2014, 30(7): 84-91.
[7] Xiong Yongjun, Yuan Xiaoyi. Design and Implementation of Automatic Monitoring System about Library Document Database Running State[J]. 现代图书情报技术, 2014, 30(7): 127-132.
[8] Wang Chuanqing, Bi Qiang. System Model of Digital Library Automatic Semantic Annotation Tool[J]. 现代图书情报技术, 2014, 30(6): 17-24.
[9] Li Xiangdong, Liao Xiangpeng, Huang Li. Research and Implementation of Bibliographic Information Classification System in LDA Model[J]. 现代图书情报技术, 2014, 30(5): 18-25.
[10] Wei Meng. Literature Recommendation Using Evolution Patterns[J]. 现代图书情报技术, 2014, 30(4): 20-26.
[11] Hu Jiming, Xiao Lu. Semantic Incremental Improvement on Vector Space Model for Text Modeling[J]. 现代图书情报技术, 2014, 30(10): 49-55.
[12] Hu Changping, Chen Guo. A New Feature Selection Method Based on Term Contribution in Co-word Analysis[J]. 现代图书情报技术, 2013, 29(7/8): 89-93.
[13] Wang Zhongyi, Xia Lixin, Shi Yijin, Zheng Senmao. The Creation and Publishing of Middle Linked Data in Digital Library[J]. 现代图书情报技术, 2013, (5): 28-33.
[14] Liu Wei, Xia Cuijuan, Zhang Chunjing. Big Data and Linked Data: The Emerging Data Technology for the Future of Librarianship[J]. 现代图书情报技术, 2013, (4): 2-9.
[15] Zhou Shanshan, Bi Qiang, Gao Junfeng. A Method of Information Retrieval Results Visualization Based on Social Network Analysis[J]. 现代图书情报技术, 2013, 29(11): 81-85.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938