Please wait a minute...
New Technology of Library and Information Service  2010, Vol. 26 Issue (9): 28-36    DOI: 10.11925/infotech.1003-3513.2010.09.06
article Current Issue | Archive | Adv Search |
Research and Implementation of Classification System of E-government Information Resources Based on Business Association
Qiao Jianzhong
National Science Library, Chinese Academy of Sciences, Beijing 100190, China;
Educational Technology Center of PLA Academy of Arts, Beijing 100081, China
Download: PDF(4613 KB)   HTML  
Export: BibTeX | EndNote (RIS)      
Abstract  

In this paper, an E-government information classification system of B/S structure is designed and implemented based on MVC mode. The author describes the system architecture and business logic, with emphasis on four key technologies including data abstraction, business association, access control and visualization. The system is proven to meet the functional requirements of the classification mechanism and business association, and the visualization of the whole classification structure and the correlations between business categories is realized.

Key wordsE-government      Information      resources      Classification      system      Business      association      Implicit      information      correlation      Information      visualization      MVC     
Received: 23 June 2010      Published: 26 October 2010
: 

G203

 

Cite this article:

Qiao Jianzhong. Research and Implementation of Classification System of E-government Information Resources Based on Business Association. New Technology of Library and Information Service, 2010, 26(9): 28-36.

URL:

http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/10.11925/infotech.1003-3513.2010.09.06     OR     http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/Y2010/V26/I9/28


[1] DB11/Z 359-2006,面向公共服务的政务信息分类规范
[S].北京:北京市质量技术监督局,2006.

[2] 陈拂晓.深度解析《国家电子政务总体框架》 .计算机世界,2007-01-29(B05).

[3] Marchand D A,Kresslein J C. Information Resources Management and the Public Administrator //Rabin J, Jackowski E M. Handbook of Information Resources Management
[M].Marcel Dekker Inc., 1988: 395-455.

[4] Bouguettaya A, Elmagarmid, A K, Medjahed B, et al. Ontologybased Support for Digital Government . In:Proceedings of the 27th International Conference on Very Large Data Bases. San Francisco, CA, USA:Morgan Kaufmann Publishers,2001: 633-636.

[5] 李锋白.政务信息资源目录体系和交换体系 推动部门间信息共享和业务协同 . .中国计算机报,2007(8).http://media.ccidnet.com/art/2625/20070124/10086 77_1.html.

[6] 谢先江.区域性电子政务信息资源目录体系实现研究
[J]. 电子政务 ,2007(12):37-42.

[7] 程建华,栾婕,陈玉龙.政务信息资源交换体系的统一平台设计
[J]. 计算机应用研究 ,2007,24(9):228-230.

[8] Stoll M, Laner D. Service Oriented E-Government .Sobh T M, Elleithy K M.Innovations in Computing Sciences and Software Engineering
[M].New York:Springer, 2010:129-134.

[9] 刘寅斌.基于Petri网的政务信息资源管理模型的研究
[J]. 扬州大学学报:自然科学版 , 2008, 11(4):46-48.

[10] 李志刚,彭立.基于数据仓库的政务辅助决策支持系统构建研究
[J]. 中国管理信息化:综合版 ,2007(12):85-87.

[11] The Apache Software Foundation . .http://struts.apache.org/.

[12] Java Excel APIA Java API to Read, Write, and Modify Excel Spreadsheets . .http://jexcelapi.sourceforge.net/.

[13] Prefuse . .http://prefuse.org/.

[14] Welcome to DOM4J 2.0 . .http://dom4j.sourceforge.net/.

[1] Yong Zhang,Shuqing Li,Yongshang Cheng. Mining Algorithm for Weighted Association Rules Based on Frequency Effective Length[J]. 数据分析与知识发现, 2019, 3(7): 85-93.
[2] Ru Li,Rui Li,Jie Jiang,Huayi Wu. Spatio-Temporal Characteristics of WMTS Access Sessions[J]. 数据分析与知识发现, 2019, 3(6): 1-11.
[3] Haici Yang,Jun Wang. Visualizing Knowledge Graph of Academic Inheritance in Song Dynasty[J]. 数据分析与知识发现, 2019, 3(6): 109-116.
[4] Ming Yi,Tingting Zhang. Ranking Answer Quality of Popular Q&A Community[J]. 数据分析与知识发现, 2019, 3(6): 12-20.
[5] Yanan Yang,Wenhui Zhao,Jian Zhang,Shen Tan,Beibei Zhang. Visualizing Policy Texts Based on Multi-View Collaboration[J]. 数据分析与知识发现, 2019, 3(6): 30-41.
[6] Jing Shi,Chenlu Li,Yuxing Qian,Liqin Zhou,Bin Zhang. Information Needs of Domestic and International HCQA Users ——An Empirical Analysis[J]. 数据分析与知识发现, 2019, 3(5): 1-10.
[7] Cheng Zhou,Hongqin Wei. Evaluating and Classifying Patent Values Based on Self-Organizing Maps and Support Vector Machine[J]. 数据分析与知识发现, 2019, 3(5): 117-124.
[8] Jiaming Liang,Jie Zhao,Zhou Jianlong,Zhenning Dong. Detecting Collusive Fraudulent Online Transaction with Implicit User Behaviors[J]. 数据分析与知识发现, 2019, 3(5): 125-138.
[9] Bengong Yu,Yangnan Chen,Ying Yang. Classifying Short Text Complaints with nBD-SVM Model[J]. 数据分析与知识发现, 2019, 3(5): 77-85.
[10] Yiwen Zhang,Chenkun Zhang,Anju Yang,Chengrui Ji,Lihua Yue. A Conditional Walk Quadripartite Graph Based Personalized Recommendation Algorithm[J]. 数据分析与知识发现, 2019, 3(4): 117-125.
[11] Shijie Song,Yuxiang Zhao,Wenting Han,Qinghua Zhu. The Inhibition Effect of Health Literacy on Health Risk Under the Internet Environment: An Empirical Study of Chronic Diseases Based on CHNS Data[J]. 数据分析与知识发现, 2019, 3(4): 13-21.
[12] Jiang Wu,Guanjun Liu,Xian Hu. An Overview of Online Medical and Health Research: Hot Topics, Theme Evolution and Research Content[J]. 数据分析与知识发现, 2019, 3(4): 2-12.
[13] Quan Lu,Anqi Zhu,Jiyue Zhang,Jing Chen. Research on User Information Requirement in Chinese Network Health Community: Taking Tumor-forum Data of Qiuyi as an Example[J]. 数据分析与知识发现, 2019, 3(4): 22-32.
[14] Jiang Wu,Yinghui Zhao,Jiahui Gao. Research on Weibo Opinion Leaders Identification and Analysis in Medical Public Opinion Incidents[J]. 数据分析与知识发现, 2019, 3(4): 53-62.
[15] Qingqing Zhang,Xingshi He,Huimin Wang,Shengjun Meng. Text Sentiment Classification Based on Deep Belief Network[J]. 数据分析与知识发现, 2019, 3(4): 71-79.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938   E-mail:jishu@mail.las.ac.cn