Please wait a minute...
New Technology of Library and Information Service  2010, Vol. 26 Issue (10): 1-9    DOI: 10.11925/infotech.1003-3513.2010.10.01
article Current Issue | Archive | Adv Search |
Research on Models of User Behaviour Driven Personalized Services
Ku Liping
Department of Library and Information Science, National Taiwan University, Taipei 100671,China
Download: PDF(463 KB)   HTML  
Export: BibTeX | EndNote (RIS)      

Personalized service is a way to optimiz information system.This paper introduces the models of user behaviour to optimize retrieval systems, information recommendation systems, workflow management systems, user-generated system, social network systems, media player system, Web navigation support system, mobile information system, and interactive panels. The change of user models are explained, from model of using tools, to model of technical operations, then to model of user psychology and behavior.To propose a workflow including “User Behavior-User Modeling-Personalized Services-Redesign” as the overall program that user behaviour driven digital library personalized services.

Key wordsUbiquitous      intelligence      Information      and      Communication      Technologies      (ICT)      User      profile      Ontology     
Received: 26 August 2010      Published: 04 January 2011



Cite this article:

Ku Liping. Research on Models of User Behaviour Driven Personalized Services. New Technology of Library and Information Service, 2010, 26(10): 1-9.

URL:     OR

[1] Naylor S, Stoffel B, Van Der Laan S. Why isn’t Our Chat Reference Used More? Finding of Focus Group Discussions with Undergraduate Students
[J]. Reference & User Services Quarterly, 2008, 47(4):342-354.

[2] Rafaeli A, Ziklik L, Doucet L. The Impact of Call Center Employees’ Customer Orientation Behaviors on Service Quality
[J]. Journal of Service Research, 2008, 10(3):239-255.

[3] Kwon O. Psychological Model Based Attitude Prediction for Context-aware Services
[J]. Expert Systems with Applications, 2010, 37(3):2477-2485.

[4] Moon J, Chadee D, Tikoo S. Culture, Product Type, and Price Influences on Consumer Purchase Intention to Buy Personalized Products Online
[J]. Journal of Business Research, 2008, 61(1):31-39.

[5] Kim T J, Kim M C. Context Awareness Using Semantic Web Technology in the Ubiquitous Learning Service
[M]. New York: Annals of the New York Academy of Sciences, 2008:501-515.

[6] Liao S C, Kao K F, Liao I E, et al. PORE: A Personal Ontology Recommender System for Digital Libraries
[J]. Electronic Library, 2009, 27(3):496-508.

[7] Hwang J, Lee Y, Kim S. Modelling Weblog Success: Case of Korea
[J]. Journal of Universal Computer Science, 2009, 15(8):1589-1606.

[8] Li X, Feng L, Zhou L Z, et al. Learning in an Ambient Intelligent World: Enabling Technologies and Practices
[J]. IEEE Transactions on Knowledge and Data Engineering, 2009, 21(6):910-924.

[9] Weng L K, Zhang Y X, Zhou Y Z, et al. A Joint Web Resource Recommendation Method Based on Category Tree and Associate Graph
[J]. Journal of Universal Computer Science,2009, 15(12):2387-2408.

[10] Bjelica M. Experiment with User Modeling for Communication Service Retrieval
[J]. IEEE Communications Letters, 2008, 12(10):797-799.

[11] Bonacin R, Baranauskas M C C, Liu K C, et al. Norms-based Simulation for Personalized Service Provision
[J]. Semiotica, 2009, 175(1-4):403-428.

[12] Wang C H. Outlier Identification and Market Segmentation Using Kernel-based Clustering Techniques
[J]. Expert Systems with Applications, 2009, 36(2):3744-3750.

[13] Chiu D K W, Leung H F, Lam K M. On the Making of Service Recommendations: An Action Theory Based on Utility, Reputation, and Risk Attitude
[J]. Expert Systems with Applications,2009, 36(2):3293-3301.

[14] Choi O, Han S. Personalization of Rule-based Web Services
[J]. Sensors, 2008, 8(4):2424-2435.

[15] Germanakos P, Tsianos N, Lekkas Z, et al. Capturing Essential Intrinsic User Behavior Values for the Design of Comprehensive Web-based Personalized Environments
[J]. Computers in Human Behavior, 2008, 24(4):1434-1451.

[16] Ughetto L, Voglozin W A, Mouaddib N. Database Querying with Personalized Vocabulary Using Data Summaries
[J]. Fuzzy Sets and Systems, 2008, 159(15):2030-2046.

[17] Morales-Del-Castillo J M, Pedraza-Jimenez R, Ruiz A A, et al. Semantic Model of Selective Dissemination of Information for Digital Libraries
[J]. Information Technology and Libraries, 2009, 28(1):21-30.

[18] Albadvi A, Shahbazi M. A Hybrid Recommendation Technique Based on Product Category Attributes
[J]. Expert Systems with Applications, 2009, 36(9):11480-11488.

[19] Luo J Z, Dong F, Cao J X, et al. A Context-aware Personalized Resource Recommendation for Pervasive Learning
[J]. Cluster Computing, 2010, 13(2):213-239.

[20] Chen C F, Wu Z Q, Ran C J, et al. A Dynamic RSS Information Push Service Mechanism Based on Ontology of User Information Needs
[J]. Electronic Library, 2009, 27(2):222-236.

[21] Peis E, Herrera-Viedma E, Morales-del-Castillo J M. A Semantic Service Model of Selective Dissemination of Information (SDI) for Digital Libraries
[J]. Profesional DE LA Informacion, 2008, 17(5):519-525.

[22] Choeh J Y, Lee H J. Mobile Push Personalization and User Experience
[J]. AI Communications, 2008, 21(2-3):185-193.

[23] Kwon O, Choi S. Applying Associative Theory to Need Awareness for Personalized Reminder System
[J]. Expert Systems with Applications, 2008, 34(3):1642-1650.

[24] Toninelli A, Corradi A, Montanari R. Semantic-based Discovery to Support Mobile Context-aware Service Access
[J]. Computer Communications, 2008, 31(5):935-949.

[25] Koutkias V G, Chouvarda I, Triantafyllidis A, et al. A Personalized Framework for Medication Treatment Management in Chronic Care
[J]. IEEE Transactions on Information Technology in Biomedicine, 2010, 14(2):464-472.

[26] Patrick K, Raab F, Adams M A, et al. A Text Message-based Intervention for Weight Loss: Randomized Controlled Trial
[J]. Journal of Medical Internet Research, 2009, 11(1):6.

[27] Blobel B. Architectural Approach to eHealth for Enabling Paradigm Changes in Health
[J]. Methods of Information in Medicine, 2010, 49(2):123-134.

[28] Dang J B, Hedayati A, Hampel K, et al. An Ontological Knowledge Framework for Adaptive Medical Workflow
[J]. Journal of Biomedical Informatics, 2008, 41(5):829-836.

[29] Lim J, Kim M, Lee B, et al. A Target Advertisement System Based on TV Viewer’s Profile Reasoning
[J]. Multimedia Tools and Applications, 2008,36(1-2):11-35.

[30] Debrett M. Riding the Wave: Public Service Television in the Multi-platform Era
[J]. Media Culture & Society, 2009, 31(5):807.

[31] Aghasaryan A, Betge-Brezetz S, Senot C, et al. A Profiling Engine for Converged Service Delivery Platforms
[J]. Bell Labs Technical Journal, 2008, 13(2):93-103.

[32] Chen C M, Liu C Y. Personalized E-news Monitoring Agent System for Tracking User-interested Chinese News Events
[J]. Applied Intelligence, 2009, 30(2):121-141.

[33] Yuan J L, Yu Y, Xiao X,et al. SVM Based Classification Mapping for User Navigation
[J]. International Journal of Distributed Sensor Networks, 2009, 5(1):32.

[34] Jiang X, Tan A H. Learning and Inferencing in User Ontology for Personalized Semantic Web Search
[J]. Information Science, 2009, 179(16):2794-2808.

[35] Strobbe M, Van Laere O, Dauwe S, et al. Interest Based Selection of User Generated Content for Rich Communication Services
[J]. Journal of Network and Computer Applications, 2010, 33(2):84-97.

[36] Kovacevic A, Heckmann O, Liebau N C, et al. Location Awareness-Improving Distributed Multimedia Communication
[J]. Proceedings of the IEEE, 2008, 96(1):131-142.

[37] Sienel J, Martin A L, Zorita C B, et al. OPUCE: A Telco-Driven Service Mash-Up Approach
[J]. Bell Labs Technical Journal, 2009, 14(1):203-218.

[38] Chou P H, Li P H, Chen K K, et al. Integrating Web Mining and Neural Network for Personalized E-commerce Automatic Service
[J]. Expert Systems with Applications, 2010, 37(4):2898-2910.

[39] Hong J Y, Suh E H, Kim J, et al. Context-aware System for Proactive Personalized Service Based on Context History
[J]. Expert Systems with Applications, 2009, 36(4):7448-7457.

[40] Kim Y B. Accessibility and Usability of User-centric Web Interaction with a Unified-Ubiquitous Name-based Directory Service
[J]. World Wide Web, 2010, 13(1-2):105-120.

[41] Chen C L, Lai Y L, Chen C C, et al. Construction of a Real-Time and Secure Mobile Ticket System
[J]. Journal of Information Science and Engineering, 2009, 25(3):807-825.

[42] Hong T P, Huang C M, Horng S J. Discovering Fuzzy Personal Moving Profiles in Wireless Networks
[J]. Applied Soft Computing, 2009, 9(2):667-676.

[43] Huang C M, Hong T P, Horng S J. Discovering Mobile Users’ Moving Behaviors in Wireless Networks
[J]. Expert Systems with Applications, 2009, 36(8):10809-10814.

[44] Jabbar H, Jeong T, Hwang J, et al. Viewer Identification and Authentication in IPTV Using RFID Technique
[J]. IEEE Transactions on Consumer Electronics, 2008, 54(1):105-109.

[45] Lopez-Nores M, Blanco-Fernandez Y, Pazos-Arias J J, et al. Receiver-side Semantic Reasoning for Digital TV Personalization in the Absence of Return Channels
[J]. Multimedia Tools and Applications, 2009, 41(3):407-436.

[46] Liu N H, Hsieh S J, Tsai C F. An Intelligent Music Playlist Generator Based on the Time Parameter with Artificial Neural Networks
[J]. Expert Systems with Applications, 2010,37(4):2815-2825.

[47] Chung T S, Rust R T, Wedel M. My Mobile Music: An Adaptive Personalization System for Digital Audio Players
[J]. Marketing Science, 2009, 28(1):52-68.

[48] Mas I, Berggren V, Jana R, et al. IMS-TV: An IMS-based Architecture for Interactive, Personalized IPTV
[J]. IEEE Communications Magazine, 2008, 46(11):156-163.

[49] Gil A, Fraile F, Ramos M, et al. Personalized Multimedia Touristic Services for Hybrid Broadcast/Broadband Mobile Receivers
[J]. IEEE Transactions on Consumer Electronics, 2010, 56(1):211-219.

[50] Srbljic S, Skvorc D, Skrobo D. Widget-Oriented Consumer Programming
[J].Automatika, 2009, 50(3-4):252-264.

[51] Yoon H, Woo W. Design and Implementation of a Universal Appliance Controller Based on Selective Interaction Modes
[J]. IEEE Transactions on Consumer Electronics, 2008, 54(4):1722-1729.

[52] Kim S K, Shin Y M, Yu C R, et al. Integrated Service Creation Environment for Open Network Services
[J]. Annals of Telecommunications, 2008, 63(3-4):167-181.

[53] Park E, Nam H S. A Service-Oriented Medical Framework for Fast and Adaptive Information Delivery in Mobile Environment
[J]. IEEE Transactions on Information Technology in Biomedicine,2009, 13(6):1049-1056.

[54] Chang Y I, Shen J H, Chen T I. A Data Mining-based Method for the Incremental Update of Supporting Personalized Information Filtering
[J]. Journal of Information Science and Engineering, 2008, 24(1):129-142.

[55] Tien J M. Services: A System’s Perspective
[J]. IEEE Systems Journal, 2008, 2(1):146-157.

[56] Munoz-Organero M, Munoz-Merino P J, Kloos C D. Personalized Service-Oriented E-learning Environments
[J]. IEEE Internet Computing, 2010, 14(2):62-67.

[1] Lixin Xia,Jieyan Zeng,Chongwu Bi,Guanghui Ye. Identifying Hierarchy Evolution of User Interests with LDA Topic Model[J]. 数据分析与知识发现, 2019, 3(7): 1-13.
[2] Xiuxian Wen,Jian Xu. Research on Product Characteristics Extraction and Hedonic Price Based on User Comments[J]. 数据分析与知识发现, 2019, 3(7): 42-51.
[3] Shiqi Deng,Liang Hong. Constructing Domain Ontology for Intelligent Applications: Case Study of Anti Tele-Fraud[J]. 数据分析与知识发现, 2019, 3(7): 73-84.
[4] Ru Li,Rui Li,Jie Jiang,Huayi Wu. Spatio-Temporal Characteristics of WMTS Access Sessions[J]. 数据分析与知识发现, 2019, 3(6): 1-11.
[5] Zhu Fu,Yuefen Wang,Xuhui Ding. Semantic Representation of Design Process Knowledge Reuse[J]. 数据分析与知识发现, 2019, 3(6): 21-29.
[6] Han Huang,Hongyu Wang,Xiaoguang Wang. Automatic Recognizing Legal Terminologies with Active Learning and Conditional Random Field Model[J]. 数据分析与知识发现, 2019, 3(6): 66-74.
[7] Jing Shi,Chenlu Li,Yuxing Qian,Liqin Zhou,Bin Zhang. Information Needs of Domestic and International HCQA Users ——An Empirical Analysis[J]. 数据分析与知识发现, 2019, 3(5): 1-10.
[8] Wancheng Chen,Haoran Dai,Yinghan Jin. Appraising Home Prices with HEDONIC Model: Case Study of Seattle, U.S.[J]. 数据分析与知识发现, 2019, 3(5): 19-26.
[9] Shijie Song,Yuxiang Zhao,Wenting Han,Qinghua Zhu. The Inhibition Effect of Health Literacy on Health Risk Under the Internet Environment: An Empirical Study of Chronic Diseases Based on CHNS Data[J]. 数据分析与知识发现, 2019, 3(4): 13-21.
[10] Quan Lu,Anqi Zhu,Jiyue Zhang,Jing Chen. Research on User Information Requirement in Chinese Network Health Community: Taking Tumor-forum Data of Qiuyi as an Example[J]. 数据分析与知识发现, 2019, 3(4): 22-32.
[11] Lu An,Yanping Liang. Selection of Users’ Behaviors Towards Different Topics of Microblog on Public Health Emergencies[J]. 数据分析与知识发现, 2019, 3(4): 33-41.
[12] Zhiqiang Liu,Yuncheng Du,Shuicai Shi. Extraction of Key Information in Web News Based on Improved Hidden Markov Model[J]. 数据分析与知识发现, 2019, 3(3): 120-128.
[13] Guangshang Gao. A Survey of User Profiles Methods[J]. 数据分析与知识发现, 2019, 3(3): 25-35.
[14] Zhen Zhang,Jin Zeng. Extracting Keywords from User Comments: Case Study of Meituan[J]. 数据分析与知识发现, 2019, 3(3): 36-44.
[15] Yue Yuan,Dongbo Wang,Shuiqing Huang,Bin Li. The Comparative Study of Different Tagging Sets on Entity Extraction of Classical Books[J]. 数据分析与知识发现, 2019, 3(3): 57-65.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938