Please wait a minute...
New Technology of Library and Information Service  2010, Vol. 26 Issue (10): 10-16    DOI: 10.11925/infotech.1003-3513.2010.10.02
article Current Issue | Archive | Adv Search |
Subject Association Analysis Based on CSSCI_Onto
Wang Hao, Su Xinning
Department of Information Management, Nanjing University, Nanjing 210093, China
Download: PDF(810 KB)   HTML  
Export: BibTeX | EndNote (RIS)      
Abstract  

This paper tries to change the traditional analysis mode that using association rule mining to gain the subject relationship based on single standard, and introduces the Ontology mechanism with semantic description capabilities into the knowledge organization of CSSCI academic resource for organizing subject and related concepts by object-oriented approach, so that to establishes CSSCI academic resource networks model based on Ontology. Then subject evaluation method is used to analyze the relationship between subjects annotated in CSSCI_Onto, and knowledge mining technique is also adopted to discover the multi-subject association patterns that users are interested in and implies in original knowledge, by which to obtain analysis conclusion for supporting decision, and to provide factual basis for interdisciplinary cooperation enhancement and cross-disciplinary, frontier-disciplinary emergence and development.

Key wordsCSSCI      Ontology      Subject      association      analysis      Academic      resource      networks      model      Knowledge      organization      Semantic      annotation      Academic      evaluation     
Received: 27 September 2010      Published: 04 January 2011
: 

G250

 

Cite this article:

Wang Hao, Su Xinning. Subject Association Analysis Based on CSSCI_Onto. New Technology of Library and Information Service, 2010, 26(10): 10-16.

URL:

http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/10.11925/infotech.1003-3513.2010.10.02     OR     http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/Y2010/V26/I10/10


[1] Berners-Lee T. Semantic Web Road Map . . http://www.w3.org/DesignIssues/Semantic.html.

[2] 中国社会科学引文索引 . . http://cssci.nju.edu.cn.

[3] 苏新宁. 提升图书情报学学科地位的思考——基于CSSCI的实证分析
[J]. 中国图书馆学报 , 2010(4):47-53.

[4] 金莹, 邓三鸿. 基于关键词被引聚类的人文社会科学学科分析
[J]. 现代图书情报技术 ,2006(9):43-48, 52.

[5] 金莹, 邓三鸿. 基于主题聚类的社会科学地图
[J]. 图书情报工作 , 2007, 51(4):104-108.

[6] 王昊, 苏新宁. 基于本体的CSSCI学术资源网络模型构建及其应用研究
[J]. 情报学报 , 2010, 29(2): 331-341.

[7] Astrova I. Reverse Engineering of Relational Database to Ontologies . In: Proceedings of the ESWC 2004. Heidelberg: Springer-Verlag, 2004:327-341.

[1] Jiahui Hu,An Fang,Wanqing Zhao,Chenliu Yang,Huiling Ren. Annotating Chinese E-Medical Record for Knowledge Discovery[J]. 数据分析与知识发现, 2019, 3(7): 123-132.
[2] Ke Li,Yuya Sasaki. Analyzing Sentiment Distribution with Spatial-textual Data of Multi-dimensional Clustering[J]. 数据分析与知识发现, 2019, 3(7): 14-22.
[3] Zhongxi You,Weina Hua,Xuelian Pan. Matching Book Reviews and Essential Sentiment Lexicons with Chinese Word Segmenters[J]. 数据分析与知识发现, 2019, 3(7): 23-33.
[4] Qingtian Zeng,Xiaohui Hu,Chao Li. Extracting Keywords with Topic Embedding and Network Structure Analysis[J]. 数据分析与知识发现, 2019, 3(7): 52-60.
[5] Peng Guan,Yuefen Wang,Zhu Fu. Analyzing Topic Semantic Evolution with LDA: Case Study of Lithium Ion Batteries[J]. 数据分析与知识发现, 2019, 3(7): 61-72.
[6] Shiqi Deng,Liang Hong. Constructing Domain Ontology for Intelligent Applications: Case Study of Anti Tele-Fraud[J]. 数据分析与知识发现, 2019, 3(7): 73-84.
[7] Yong Zhang,Shuqing Li,Yongshang Cheng. Mining Algorithm for Weighted Association Rules Based on Frequency Effective Length[J]. 数据分析与知识发现, 2019, 3(7): 85-93.
[8] Ru Li,Rui Li,Jie Jiang,Huayi Wu. Spatio-Temporal Characteristics of WMTS Access Sessions[J]. 数据分析与知识发现, 2019, 3(6): 1-11.
[9] Haici Yang,Jun Wang. Visualizing Knowledge Graph of Academic Inheritance in Song Dynasty[J]. 数据分析与知识发现, 2019, 3(6): 109-116.
[10] Ming Yi,Tingting Zhang. Ranking Answer Quality of Popular Q&A Community[J]. 数据分析与知识发现, 2019, 3(6): 12-20.
[11] Zhu Fu,Yuefen Wang,Xuhui Ding. Semantic Representation of Design Process Knowledge Reuse[J]. 数据分析与知识发现, 2019, 3(6): 21-29.
[12] Yanan Yang,Wenhui Zhao,Jian Zhang,Shen Tan,Beibei Zhang. Visualizing Policy Texts Based on Multi-View Collaboration[J]. 数据分析与知识发现, 2019, 3(6): 30-41.
[13] Xiaozhou Dong,Xinkang Chen. E-Coupon and Economic Performance of E-commerce[J]. 数据分析与知识发现, 2019, 3(6): 42-49.
[14] Junliang Yao,Xiaoqiu Le. Semantic Matching for Sci-Tech Novelty Retrieval[J]. 数据分析与知识发现, 2019, 3(6): 50-56.
[15] Qikai Cheng,Jiamin Wang,Wei Lu. Discovering Domain Vocabularies Based on Citation Co-word Network[J]. 数据分析与知识发现, 2019, 3(6): 57-65.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938   E-mail:jishu@mail.las.ac.cn